

Installation and Operating Manual

iMotion ${ }^{\circledR}$ TN 110 Swing Door Operator

TORMAX TECHNOLOGIES, INC.

12859 Wetmore Road
San Antonio, TX 78247
210-494-3551
210-494-5930 (FAX)
888-685-3707
WWW.TORMAXUSA.COM
ISSUE DATE: 09/10/10
INFO@TORMAXUSA.COM
P/N: US801461

SECTION

PAGE

1	REGARDING THESE INSTRUCTIONS	3
2	SAFETY AND INSPECTION	4
2.1	Preconditions for the Operation of the system	
2.2	Intended use	
2.3	Taking the system out of service in case of fault	
3	FUNCTIONS OF THE SYSTEM	5-6
3.1	Operating modes	
3.2	Electromechanical lock	
3.3	Operation on Power Failure	
4	TROUBLE SHOOTING	7
5	INSTALLATION AND PROGRAMMING	
1289	PREPARATION AND INSTALLATION	8A-81
1315	CABLE PLAN	9
1312	CONTROL UNIT MODULE	10A-10B
1264	FUNCTION CONTROL PANEL	11A-11B
1260	TERMINAL MODULE	12
1261	BASE MODULE	13A-13B
1360	INPUT/OUTPUT TERMINAL MODULE	14A - 14B
1359	BATTERY BACK UP MODULE	15A - 15B
1248	EXPLANATION OF FCP AND PROGRAMMING EXAMPLE	16A-16C
1288	SET UP	17A-17C
1319	PRIMARY/SECONDARY APPLICATION (SIMULTANEOUS PAIR OR DOUBLE EGRESS)	18A-18B
1262	TERMINAL DESIGNATION AND SENSOR INTERFACING	19A-19 L
	PROGRAMMING TABLE	20A-20B

REGARDING THESE INSTRUCTIONS

Addressee/Status

The person responsible for operation and maintainence of the system is referred to as "end - user" this designated person or persons should be familiar with the Daily Safety Check Decal and walk test procedure, ask your service representative if you are not.

Area of Application

This document is applicable for swing doors with TORMAX automatic door operator of type:
iMotion ${ }^{\oplus} 1301$ Swing Door Operator
iMotion ${ }^{\circledR}$ TN110 Swing Door Operator

Explanation of Symbols

In these instructions we have marked all positions which concern your safety with this symbol.
This symbol warns for electric voltage.
Highlighted text must be observed for safe operation disregard may cause damage to the users or the equipment.

Operating functions that are marked by the accompanying symbol corresponds to the default settings however, the technician can reprogram, see programming table for options.

This symbol marks optional components, which are not installed in all system

Symbols for Operating modes.

Operating mode OFF
Operating mode AUTOMATIC 1
Operating mode AUTOMATIC 2

Operating mode EXITOperating mode OPEN
P Operating mode P Manual Operation

2 Safety

2.1 Preconditions for the Operation of the System

The technician has inspected the door system for ANSI A156.10 or A156.19 compliance.
It is the technicians responsibility to review the functions of the equipment with the end-user.
Failure to do so may lead to improper use and could cause injury to persons or damage to the equipment.

Tormax strongly recommends the end-user be familiar with the Daily Safety Check Decal and perform the walk test as instructed every day. If the equipment does not perform as described in the Daily Safety Check Decal turn power off to the equipment or place in P mode, immediately notify your service provider.

The end-user should have their equipment inspected at least annually by a AAADM certified technician.

If the recommendations from this section 2.1 are not performed the manufacture will reject any product liability and warranty.

2.2 Intended Installation Environment

The 1301 swing door operator is an interior mount operator, the operator can operate exterior doors but the header assemblie must be installed on the interior of the building to prevent any damage.

Any other use, or any use exceeding this aim, is deemed as not used in accordance with its intended purpose. The manufacturer will not be liable for damages resulting from such applications. The risk will be borne entirely by the operator of the door system, i.e. the system operator.
Arbitrary changes to the system will exempt the manufacturer from any liability for damage re sulting from this.

2.3 Taking the System Out of Service in Case of Fault

The automatic door system must be taken out of service as soon as faults or deficiencies occur that may impair the safety of people.

- Turn power off to the equipment.
- Select operating mode " P " if system operation will be continued by means of the internal battery backup system.
* Immideatley notify your service provider.

3 Functions of the System

3.1 Operating Modes

Modes can be selected with the 6 position Function Control Panel (FCP) or a 3 position rocker switch. The technician will review the appropriate mode switch with the end-user.

(0)
 OFF Mode
 a.

The interior and exterior activators are inhibited after the door reached the fully closed position, if an electric lock has been installed it will be activeted. The operator will cycle if a signal is sent to the key switch input.
b.

Automatic 1 Mode

Typical setting for normal operation. This setting allows interior, exterior activators, key switch and safety devices to operate door.
c.

Automatic 2 Mode

Operates with the same characteristics as Automatic 1 OR the operating cycle can be diffrent if taught in with teach in 2.
d.

Allows interior activator and key switch inputs to operate the door system.Exterior activator is inhibited while door is closed but becomes active when the door is operated by the interior activator or key switch inputs.
e.

HOLD - OPEN Mode

Hold the door system open.
f.

MANUAL OPERATION (P) Mode
Allows the door to be used manualy without the use of sensors or Push n Pull activation.

The technician will clearly explain and demonstrate the modes of Operation

Before the door is placed into operation, Walk test the door in acoordance to the AAADM daily safety check decal, if any deficiencies are found turn the door system off and call your service provider, if no deficiencies are found the door system can be put into operation

3.2 Electric Lock Output

The lock output is deactivated when the FCP in placed in the (P) manual mode.

3.3 Operation Upon Power Failure

The following functions are possible according to specifications:

- Immediate Spring Closing
- The operator functions as a manual door closure.
- Continued operation if the operator is equipped with a battery backup.

4 Trouble Shooting

* E = Error $\mid \mathrm{H}=$ Hint

* No.	Fault	Reaction System	Reset
E00	Frrmware incompatible to MCU version /D	Safety operating mode or only display	Reset, new version MCU32-BASE
E0x	Internal test negative	Safety operating mode or only display	Reset
E21	LIN to FCP 1 USIN-7 interrupted	Last mode of operation remains	Automatically if OK
E22	LIN to FCP 2 USIN-7 interrupted	Last mode of operation remains	Automatically if OK
E23	LIN to s I/O-Modul 1 INOU interrupted	Programmed function will be inactive	Automatically if OK
E24	LIN to s I/O-Modul 2 INOU interrupted	Programmed function will be inactive	Automatically if OK
E25	LIN to Lock Unit 1 LOCU-40-7 interrupted	Last status remains	Automatically if OK
E26	LIN to Lock Unit 2 LOCU-40-7 interrupted	Last status remains	Automatically if OK
E30	Safety clos. creep $2>1 \mathrm{~min}$. active,test neg.	According safety function	Automatically if OK
E31	Safety open $1>1 \mathrm{~min}$. active, test neg.	According safety function	Automatically if OK
E32	Safety op. creep $1>1 \mathrm{~min}$. active, test neg.	According safety function	Automatically if OK
E33	Safety closing $1>1 \mathrm{~min}$. active, test neg.	According safety function	Automatically if OK
E34	Safety clos. creep $1>1 \mathrm{~min}$. active,test neg.	According safety function	Automatically if OK
E35	Safety swing area $>1 \mathrm{~min}$. active, test neg.	According safety function	Automatically if OK
E36	Safety stop >1min. active, test neg.	According safety function	Automatically if OK
E37	Safety open $2>1 \mathrm{~min}$. active, test neg.	According safety function	Automatically if OK
E38	Safety op. creep $2>1 \mathrm{~min}$. active, test neg.	According safety function	Automatically if OK
E39	Safety closing $2>1 \mathrm{~min}$. active, test neg.	According safety function	Automatically if OK
E41	Activator inside > 1min. active	Door remains open	Automatically if O.K.
E42	Activator outside > 1min. active	Door remains open	Automatically if O.K.
E43	Key switch > 1min. active	Door remains open	Automatically if O.K.
E46	Emergency open >10min. active	Door remains open	Automatically if O.K.
E47	Emergency close >10min. active	Door closes and remains closed	Automatically if O.K.
E48	Wake up or Push button SW2 > 1min. active	Door remains open	Automatically if O.K.
E49	Inhibit switch> 1min. active	Door stand still	Automatically if O.K.
E51	Encoder not working	Safety operating mode	Automatic Reset / Reset
E52	Potentiometer not working	Safety operating mode	Reset / Replace potentiometer
E54	Driveway in op. longer than reference	Safety operating mode	Reset >automatic configuration
E55	Position in closed position is drift to much		Reset
E61	Power supply 40V (Limit U,I,P)	Safety operating mode	Automatically if O.K.
E62	Power supply 24V (Limit U)	Safety op. mode	Automatic if OK.
E64	Motor temp. $>90^{\circ} \mathrm{C}$, cable interrupted	Safety operating mode	Automatically after cooling down
E65	Control end stage > $100^{\circ} \mathrm{C}$	Safety operating mode	Automatically after cooling down
E66	Motor current differs from given value	Safety operating mode	Reset
E67	Motor current to high in long-term	Normal operation	Automatically if o.k.
E8x	Memory or processor test negative	Safety operating mode	Reset
H11	Operator type not defined	Safety operating mode	Program operator type
H12	Door mass not defined	Safety operating mode	Program door mass
H13	Linkage type not defined	Safety operating mode	Configuration 09x and 090
H14	Automatic configuration not executed	Safety operating mode	Program 021 or 022
H18	Configuration error in trajectory	Safety operating mode	Configuration
H21	Teach-In: Door moves >15s before start	Abort Teach-In	New Teach-In
H22	Teach-In: No start within 15s	Abort Tech-In	New Teach-In
H23	Teach-In: Opening movement $>15 \mathrm{~s}$	Abort Tech-In	New Teach-In
H24	Teach-In: Hold open time >60s	Abort Tech-In	New Teach-In
H25	Teach-In: Closing movement >15s	Abort Tech-In	New Teach-In
H26	Teach-In: Wrong direction at closing	Abort Tech-In	New Teach-In
H27	Teach-In: Differing close position	Abort Tech-In	New Teach-In
H62	Calibration run in closing direction	Searches closed position	At the end of movement
H63	Reference run opening	Measures reference run length	At the end of movement
H64	Reference run closing	Searches closed position	At the end of movement
H66	Learn mode (Force detection)	Normal operation	After 3-30 opening cycles
H71	Battery mode	Door moves slowly	Power supply return
H73	Motor current in closed position to high	Normal operation	Reset
H91	Obstacle detection at opening	Door reverses	Automatically, Display 20s.
H92	Obstacle detected at closing	Door reverses	Automatically, Display 20s.
H93	Obstacle at same position at opening	Reset after 5 reversings	Automatically, Display 20s.
H94	Obstacle at same position closing	Reset after 5 reversings	Automatically, Display 20s

T-1289 e	Preparation and Installation	*ᄎᄎ $\star \star$ TORMAX
Area of application	iMotion TN110 Swing Door Drive	59 Wetmore Road
Release	January 2008	$\xrightarrow{1-888 \text {-685-307 }}$ ww.tormaxas.com
Use	Installation	

\forall uoudo
iMotion ${ }^{\circledR}$ TN110 Operator Standard Stainless Steel Cover Box

Operators Configurations

Note: TN 110 is a Non - Handed operator, See the arrow on the operator as shown in figure $1 \& 2$ for the intended direction of swing.

Drive configuration	Right Hand Swing	Left Hand Swing	Drive configuration
(1)			(2)
(3)			(4)

Preparation of the Drive Unit

Figure A

Cover
Installing the shaft :

1) Insert the drive shaft and shaft seal on to the operator and make sure to carefully align the shaft with the serration on the motor.
2) Now manually rotate the drive shaft one tooth turn on the serration of motor, in the direction opposite to the intended swing of the door for the 10 degree preload.

Position of shaft before preload

Position of shaft after 10 degree preload

Right Hand Swing

Position of shaft before Preload

Position of shaft after 10 degree preload
II

Left Hand Swing
3) Insert the shaft seal over the drive shaft to hold the shaft at correct location as shown in figure Il and then insert the safety screw in the operator as shown in figure A and tighten using 14 mm alan wrench to 221 -foot pound of force

Make sure you hold the shaft in place while tightening the screw until the serration on the shaft shaft interlock with the serration in the motor.
4) Attach the seal and cover over the bottom of safety screw as shown in figure A
5) Attach escutcheon over the top of drive shaft and shaft seal as shown in figure A
6) Attach the end stop plate in the corner of the operator unit with the hex screws provided.
7) Install the four vertical adjustement screws in the corners of the drive unit, the bolt heads of the screws should touch the ground as shown in figure B. Use the hex end of the screw to adjust the height of

Vertical Adjustment Screws

Installation of the Floor Box

- Before you install the box, make sure the recessed floor has enough space for making adjustments (For dimension of the box see page 8 \& 9
- Ensure that the recessed floor allows to install the floor box in parllel with the door frame as shown in figure 1
- Attach the corners of the floor box using appropriate fasteners as shown in figure 1
- Choose the most accessible hole for your electrical conduit as shown in figure 2 and seal the remaining holes with sealant
. Cement the box into position on all sides with the alignment to the pivot and parellel to the door frame as shown in figure 3

Install the floor box in parallel to the door frame on positions of operator as shown on page 11

Conduit access for RH configuration shown as $1 \& 3$. on page 11

Use for any configuration.

3.

1. Place the operator into the floor box with alignment to the pivot and parallel to the door frame as shown in figure C

C

2. Adjust the horizontal vertical alignment of the operator by turning the bolts as shown in figure D

It is important to center and level the operator to avoid injuries and premature wear
3. Once the operator is centered and levelled with the floor box, secure the operator inside the floor box using bolts as shown (B) in figure D

Drive Direction Counter-

Drive Direction Clockwise clockwise

For Left hand swing align spacers (1 and 3) as shown in the figure above.

For Right hand Swing (make sure to flip the metal spacer 1 and then align with metal spacer 3 as shown above)
4. Align metal spacer, Rubber seal and cover and then secure them to the operator with the
screw provided.

Power Open Spring Close

Spring Holding Force

Adjustment of shaft in closed position

Adjustment of shaft in open position

T-1315 e	Cable Plan	
Area of application	iMotion TN110 Swing Door Drive	12859 Wetmore Road San Antonio Tx78247
Release	Jan. 2009	1-888-685-3707 www.tormaxusa.com
Use	Planning, installation	

No.	®	Control Components	Notes	Cable	Length (m) without screen	Length (m) with screen
1		Motor cable		$\begin{aligned} & <49^{\prime}: 7 \times 16 \text { AWG } \\ & <82^{\prime}: 7 \times 14 \text { AWG } \end{aligned}$ $\text { cable } \varnothing \text { outside } \max 1 / 2^{\prime \prime}$		< 82'
2		Encoder cable		6×20 AWG cable \varnothing outside min. $5 / 16$ ".		< 82'
3		Activator/Push-button inside		4×20 AWG	< 98'	< 328 ${ }^{\prime}$
4		Activator/Push-button outside		4×20 AWG	< 98'	< 328 ${ }^{\prime}$
5		Key-switch		2×20 AWG	< 98'	< 328 ${ }^{\prime}$
6		\ldots		$\ldots \times 20$ AWG		< 328 ${ }^{\prime}$
7		User interface iMotion Connected with FCC-connector		Phone ribbon cable 6×25 AWG RJ12, 6P6C	< 98'	
		User interface iMotion Connected with LIN-Adapter		3×23 AWG	< 98'	< 328
8		Safety activator closing		4×20 AWG	< 98'	< 328
9		Safety activator opening		4×20 AWG	< 98'	< 328 ${ }^{\prime}$
10		\ldots				
11		Door lock		2×20 AWG	< 82'	< 328
12		Message $1 . .$.		2×20 AWG	< 98'	< 328
13		Message $2 . .$.		2×20 AWG	< 98'	< 328 ${ }^{\prime}$
14		Mains main switch		3×15 AWG		

T-1312 e	Control Unit Module MCU32-CONU-120-18-A	
Area of application	iMotion TN110 Swing Door Drive	12859 Wetmore Road San Antonio,Tx 78247 1-888-685-3707 www.tormaxusa.com
Release	January 2009	
Use	Installation	

Purpose

Control unit for iMotion TN110 Swing Door Drive.

Function

The control unit contains all necessary components for operating an automatic swing door. It provides connections for the operating unit, electric lock, motor unit, battery unit and input / output module. The system can be configured either via the MCU32-USIN operating unit or via iMotion service software.

1 Power supply MCU32-FLTR-A
2 Voltage selector 230/115VAC
3 Transformer 120 VA MCU32-TRAF-29-120-A
4 Power supply module MCU32-PSUP-40-18-C or space for power supply module MCU32-PSUP-40-36-A
5 Fuse 5AT
6 Base module MCU32-BASE-40-200-A
7 Config card MCU32-CONF-... slot
8 LINBUS
9 SW2, Activation
10 Brake module with motor connection terminals MCU32-TEBR-40 -100-A
11 Terminal for adjusting braking force
12 Space for installing a module carrier for 3 modules (input/output module MCU32-INOU-A, relay module, ...)
13 Space for installing battery unit MCU32-BATU-24-1-C
14 Cable shield grounding clamp and ferrite shield for interference suppression for the motor and cable.

Component Dimensions

Technical Data

Drive system

Control system	Control unit MCU32
Mains connection	$1 \times 230 / 1 \times 115 \mathrm{VAC}, 50-60 \mathrm{~Hz}, 10 \mathrm{~A}$
Power consumption	4 ... 250 W
Sensor power supply	24 V DC/0,75 A
Protective class of drive	IP 67
Protective class of control box	IP 55
Ambient temperature	$-4{ }^{\circ} \mathrm{F}$ to $+122{ }^{\circ} \mathrm{F}$
Outputs	24 V DC short-circuit proof (within power supply 0.75 A in total)
Standards	DIN 18650, EN 60335-1, EN 61000-6-2, EN 61000-6-3, UL 325
Durability	Class 3 according to DIN 18650-1 Dec. 2005 1000000 test cycles with 4000 cycles per day
Dimension	17-21/32"×11-17/32" $\times 5$ "
Weight	86 lb operator alone
Opening angle	Max 100°
Opening/Closing Speed	Max. $45^{\circ} / \mathrm{s}$
Hold-open time	0-60 s; permanently open

T-1312 e	Producer: TORMAX AUTOMATIC

T-1264 e	Module Documentation Function Control Panel (FCP) MCU32-USIN-7-A	$\star \star \star \star \star$ TORMAX
Area of application	iMotion TN110	12859 Wetmore Road
Release	October 2008	1-888-685-3707 www.tormaxusa.com
Use	Programming and Mode selection	

Purpose

Programming and operating the TORMAX iMotion universal processor
Functional control panel (FCP) MCU32-USIN-7-A

Connection Diagram

Connection Option 2

Connection Option 1

Connection Option 3

- Switch mains 115 V AC ON after the functional control panel(FCP) is connected.

LIN Connection

- Cut to length and assemble the LIN connection cable on both ends with a FCC 6-pole plug
. FCC plug is polarity sensitive

- First connect the LIN cable and FCP to the TN110 operator then switch the 110 vAC on.

Technical Data:

Inputs	$2 \times$ Pull up
Terminal cross section:	$0.5 \mathrm{~mm}^{2}$ (strand or wire)
Terminal cross section:	$\mathrm{LIN}, \mathrm{FCC} 6-$ Pol
Ambient Temperature:	$-4^{\circ} \mathrm{F} \ldots+122^{\circ} \mathrm{F}$
Dimensions:	$1^{25} / 32^{\prime \prime}-125 / 32^{\prime \prime}$
LIN cable length:	$98^{\prime} \mathrm{Max}$

T-1260 e	Module Documentation Terminal Module MCU32-TERM-B	$\star \star \star \star \star$ TORMAX AUTOMATIC 12859 Wetmore Road San Antonio,Tx 78247 1-888-685-3707 www.tormaxusa.com
Area of application	iMotion TN110	
Release	May 2008	
Use	Input / output terminal board	

Purpose

Input, output and FCP connections for the iMotion TN110 drives

Installation

\triangle
The module must be protected against electrostatic discharge (ESD) when touching it. The module may only be laterally touched. Other components must not be touched.

- Fasten the circuit board at the predetermined points in the power-free condition.
- Switch on the power supply only after all MCU32 modules are connected.

Connection Diagrams

See T-1262 for iMotion TN110
Technical Data

Inputs:	$8 \times$	Pull up in: $24 \mathrm{VDC} / 3 \mathrm{~mA}$
		Function is programmable
Outputs:	$2 \times$	Transistor out: 24 VDC / 0,75 A max.
		Function is programmable
	$1 \times$	Transistor pwm out / < 24 W and < 2 A
		Function and voltage are programmable
Load 24 V power supply:	0.75 A	with MCU32-PSUP-40-18-x
	1.5 A	with MCU32-PSUP-40-36-x
Terminal cross-sections:	$1.5 \mathrm{~mm}^{2}$	(stranded wire conductors or 1 wire) for terminals A, B and CAN BUS
	$2.5 \mathrm{~mm}^{2}$	(stranded wire conductors or 1 wire) for terminals C, D, E
Ambient temperature:	$-4 \ldots+122^{\circ} \mathrm{F}$	
Dimensions:	$4^{23 / 32 "} \times 3^{1 / 32^{\prime \prime}}$	
Module interfaces:	TORMAX safety sensors with plugable connections	
	$2 \times$ LIN / FCC 6 pole for MCU32-USIN, MCU32-INOU, MCU32-LOCU	
	$1 \times$ RS232 / FCC 4 pole	
	$2 \times$ CAN	

T-1261 e	Module Documentation Base Module MCU32-BASE-40-200-A	
Area of application	iMotion 1301,TN 110 Operators and 2301, 2401 Drives	12859 Wetmore Road
Release	August 2008	$1-888-685-3707$ www.tormaxusa.com
Use	Installation and maintanence	

Purpose

To manage the function of all iMotion 1301,TN 110 swing door operators and iMotion 2301,2401 sliding door drives.

Function

The base module is the central functional control system of the MCU32 module family. The module contains the processor system including a non-volatile (i.e. voltage failure safe) memory for the adjusted values, a 3-phase converter for the motor and the drivers for the interfaces OUT1-2, PWM, as well as LIN and CAN.

The control system is programmed witht he FCP.

Base module MCU32-BASE-40-200-A

1 Connection for encoder MCU32-ENCO-24-16-A	6 Slot for configuration card MCU32-CONF-... (*)
2 Connection for motor MCU32-MOTR-40-...(*)	7 Display for power supply 24 V and 5 V
3 Connection for power supply module MCU32-PSUP-40-... (*)	8 Beeper
4 Connection for potentiometer, closed position indicator	9 Connection for terminal module MCU32-TERM-... (*)
5 SW1	

(*) Different versions

Installation

4
The module must be protected against electrostatic discharge (ESD) when touching it.

[^0]
Module Connections

Commissioning

Program using FCP see T-1288

Technical Data

Processor	32 bits, 30 MHz
System monitoring	Complies with DIN 18650 requirements
Ambient temperature	$-4^{\circ} \mathrm{F} . . .{ }^{+}+167^{\circ} \mathrm{F}$
Overheating protection	for power supply 40 V
Dimensions	$77 / 8^{\prime \prime}-31 / 32^{\prime \prime}$
Module interfaces:	MCU32- PSUP
	MCU32- MOTU
	MCU32- TERM
	MCU32- CONF
	MCU32- TERB

T-1360 e	Module Documentation Input /Output Module MCU32-INOU-A	4 TORMAX AUTOMATIC 12859 Wetmore Road San Antonio,Tx7824 www.tormaxusa.com
Area of application	iMotion TN 110	
Release	January 2010	
Use	Input/Output terminal board	

Purpose

To provide additional Input/Output terminals for the iMotion TN 110 Swing Door Drive.

Function

1 LIN-Bus
2 Code switch for LIN address
3 Input 1 ... 4
4 Output 1 ... 4
5 Display power supply
6 Display status of inputs 1 ... 4
7 Display status of outputs $1 \ldots 4$

The IO module receives its control commands from the base module via the LIN-Bus (1). The two LIN plugs are identical. Each module must have a unique LIN address which can be set with the code switch (2). The function of the inputs and outputs depends on the programming of the basic control system. See programming table for the functions.

A self-resetting thermal cut-out protects the control system's 24 V power supply against continuous overload. The thermal cut-out resets itself immediately after the overload is removed.
Connection Diagram
 per output.

The 24 VDC power supply on this module must not be used as the power supply to sensors.

Installation

The module is installed on the control unit

LIN Connection

- Cut to length and assemble the LIN connection cable on both ends with a FCC 6-pole plug
- FCC-plug is polarity sensitive.

Commissioning

The modules must be wired according to the connection diagram.
The modules are detected automatically when initiating the auto configuration.
See programming table for input and output functions.

Technical Data

Inputs:
Outputs:
Input/output reaction time:

Power supply 24 V :
Terminal cross section:
LIN Interface
Length of all LIN cables:
LIN cable length between modules:
Ambient temperature:
Dimensions:
Module interface:
$4 \times$ Pull up in: 24 VDC / 5 mA , function programmable
Transistor out: 24 VDC / Continuous current max. 25 mA , function programmable with 1 module MCU-INOU-A < 50 ms with 2 modules MCU-INOU-A < 100 ms

Total continuous load < 100 mA
$0.14 \ldots 1.5 \mathrm{~mm}^{2}$ (recommended conductor cross section: $0.5 \mathrm{~mm}^{2}$)
FCC 6-Pol
< 100 m
98' Max
$-4^{\circ} \mathrm{F} \ldots+122^{\circ} \mathrm{F}$
2 5/32"- 3 11/16"
MCU32-TERM

T-1359 e	Module Documentation Battery Backup MCU32-BATU-24-1-C	
Area of application	iMotion TN110 Swing Door Drive	${ }_{\text {l }}^{\text {12859 Wetmorer Road }}$ SanAtonio TX 78247
Release	July 2009	www.tormaxus.com
Use	Installation	

Purpose

This battery backup unit is design to be used for iMotion TN110 Swing Door Drive
The module is used for limited - time operation of the system. A further use is the limited - time admission into the building via the key switch during a power failure.

Functional Principle

The battery unit includes the batteries MCU32-ACCU-24-1-C and the battery module MCU32-BATT-24-1-B (1).
The batteries store the energy required to continue system operation on power failure. The battery module contains a charging circuit that charges the batteries in the presence of mains power and/or holds them in the charged state. In order to avoid total discharge, the battery can be switched off with a switch.

The operational function depends on the programming of the basic control system. See programming table for programming options.
The wake-up function allows renewed switching on with subsequent door opening after the battery has been disconnected. The function depends on the current charge of the accumulators and necessitates a connected key switch (4).

1 Battery module
2 Connector BAT
3 Connector A
4 Terminal key switch

Connection Diagram

Supply module
Battery unit

Installation

- Mount the battery unit (5) onto the contol unit (6).
- With the provided cable, connect the battery unit with the power supply module on the control module.

When connecting the batteries make sure that the polarities are not interchanged and the contacts are not short circuited! A sudden discharge may cause an explosion of the batteries! The constituents are highly poisonous!

Commissioning

The battery back up module is detected automatically during auto configuration as shown in T-1288

Component Dimensions

Technical Data

Rated voltage
Maximum power
Batteries
Ambient temperature
Interfaces

24 VDC
120 W
$2 \times 12 \mathrm{~V} / 7,2 \mathrm{Ah}$
$0 \ldots+104^{\circ} \mathrm{F}$
MCU32-PSUP-40-36-A

T-1248 e	Programming with Function Control Panel (FCP)	
Area of application	iMotion TN 110	12859 Wetmore Road SanAntonio, TX 78247
Release	July 2008	1-888-685-3707 www.tormaxusa.com
Use	FCP Operation and Function	

Contents

Function of (FCP) MCU32 User Interface

The FCP has 2 function levels

- Select operateing modes by end user
- Programming module for the AAADM certified technician Programming can only be accessed by a technician who knows the access code. Unauthorized programming is practically eliminated.

Control Level end user

Functions:	Choice of the operating mode Reset
Displays:	Current operating mode
	Two-digit fault numbers
Access protection:	Panellock

Programming Level for the AAADM certified technician

Functions:	Input of access code "C" Programming of max. 100 parameters
in 10 steps	Currently set parameter
Displays:	Access code (111)
Access protection:	10 min. after the lastprogramming Time out:end is made the FCP will time out the accescian will be required the enter again to make further adjustments.

Programming with the FCP

With key 1 the value of the number is alwaysincreased (0 to 9 and back to 0)

With key 2 the displayed number is always confirmed.

1. Start Access Code

Indication of operating mode

2. Entering Access Code 111

Select the number " 1 " with key 1 and confirm by pressing key 2 , repeat this step two more times entering the code 1-1-1

Time out: Occurs if no input is made during 10 s , then the user interface goes back to indicating the operating mode.
3. Start Programming Level
P is shown, ready for pgramming

4. Entering Parameter Code

- Select and confirm the 2nd and 3rd code digit using the same sequence as shown in step 2

Note:

- After the 2nd code digit hasbeen con firmed, the flashingdigit shows the set value of the parameter (= third digit of the parameter code). If the vale is confirmed the FCP will rapidly flash for 1 sec then display P again.
- By quickly pressing and releasing both keys simultaneously the FCP will return to the set mode.

Time-Out

If no entry is made during $10 \mathrm{~s}, \mathrm{P}$ is shown again.
If P is not con firmed during the next 10 swith key 2 , the FCP returns to the operating mode.
During the next 10 minutes, pressing both keyssimultaneouslywill cause a direct change to programming level P

Programming Example

Disable Push n Pull feature with code 370 See programming table for other adjustments.

Example 1: Begin by entering the access code 111

Example 2: Enter Code 370

Within 10 minutes you can enter the programming mode by pressing both keys simultaneously and P will display If no further adjustments are made after 10 minutes the FCP will be protected with the access code, Repeat Example1.

T-1288 e	Commissioning		, TORMAX AUTOMATIC 12859 Wetmore Road SanAntonio, TX 78247 www.tormaxusa.com
Area of application	iMotion TN110 Swing Door Drive	FW V06.xx	
Release	February 2010		
Use	Set Up		

Precondition

1. All activating and safety devices are to be adjusted in accordance with See T-1262 for input / output designation. the latest ANSI A156.10 or ANSI A156.19 standard.

Note on the content of automatic configuration

Safety inputs sf1,2,3,4	Contact type NC or NO and connection with or without monitoring is automatically detected, safety sensors must not be in detection.
Battery unit MCU32-BATU	The functioning module is recognized and saved via the LIN Bus if the module is connected see page 13, operator is powered by BATU in the event of power loss
User interface 2 MCU32-USIN	The functioning module is recognized and saved via the LIN Bus if the module is connected as module 1 or module 2
Function Control Panel	The FCP is recognized and saved via LIN Bus if the FCP is connected and coded as shown on page 10. The primary FCP is detected immediately when connected to the LIN Bus input of control as seen on page 10
Reference travelling path	The door looks for the end stops, starting with an automatic closing command or travelling with slow speed depending on the run commands. After detection of both end stops the refernce travelling path is saved. The display shows H63 for the opening motion and H 64 for the closing motion.
Spring force	The forces needed (spring and friction) in the opening and closing direction are mapped and amendment are constantly made. If the spring force is subsequently significantly changed, we recommend that a factory reset should be undertaken this will record all aspects of new forces.

Access Code: " Function control panel will display letter 'c' in this level"
Use code 111 to enter in programming level and FCP will display letter ' P ' in this level
Note: Function control panel will time out, if no entry is made within 10 minutes of the last programming entry and technician will be required to enter the access code again to make further adjustments.

Factory Reset:

Enter code 041 to do the factory reset

Programming of the Control System

The sequence of the programming needs to be observed. Damage to the system may result if disregarded The area of the door leaves has to be safeguarded during the programming process. The control system uses an H to indicate which program step is needed next.

1. Operator Type (H11 displayed on FCP = not yet programmed)

Code 016
2. Door Leaf Weight (H12 displayed on FCP = not yet programmed)

Program the code 07.. and corresponding value for the proper estimated door width and weight.

Example:
36 " door weighing 882 lb 's will have code 078.

	Door width (m)						
	$31^{\prime \prime}$	$36^{\prime \prime}$	$48^{\prime \prime}$	$55^{\prime \prime}$	$63^{\prime \prime}$	$71^{\prime \prime}$	
Weight	Code 07..						
110 lb	1	1	1	2	3	3	
220 lb	1	2	3	4	5	6	
330 lb	2	3	4	6	8	9	
441 lb	3	4	6	8	9		
551 lb	3	5	7	9			
661 lb	4	6	8				
771 lb	5	7	9				
882 lb	5	8					
992 lb	6	9					

3. Preload the shaft(H 13 will be displayed on $\mathrm{FCP}=$ preload not selected yet)

Enter Code 091 for Spring preload
Note:

After code is entered select the mode to HOLD - OPEN, the door will open 20 degrees then stop, and now change the mode to OFF MODE the door will close to the full closed position.

Enter Code 090 to terminate the preload procedure

4. Electric Lock Output

Enter

We recommend to turn off the electric lock as it is a default setting with the operator and the door does not have electric lock installed on it.

Enter Code: 021 for the automatic configuration of:

- Safety inputs A sf1, A sf2, B sf3 and B sf4

When Code 021 is entered the contact type will be automatically detected (NO or NC), make sure sensors are not in detection.

- Battery unit MCU32-BATU

6. Teach - in

1) Adjust the internal door stop as shown in Fig. A to achieve 90° door open position, and put the external door stop as recommended.

Internal Stop Open Position

2) Change the Operating Mode to Automatic Mode (Solid Green Circle on FCP)

3) Press and release SW2 in Automatic Operating Mode, the first cycle will be slow as door will look for a positive stop to determine its full open position then complete several opening cycles until learning code(H66) is no longer displayed on FCP. The learning procedure lasts between 5-30 cycles.

7. Further Functions and Parameters

See the programming table for other adjustments and functions.

8. Brake Force with No Power

Open the door with no power and use jumper to increase the brake force as shown in figure

9. Checking

Brake force \longrightarrow

Always inspect your equipment to be ANSI A 156.10 or A 156.19 compliant depending on your application.

T-1319 e	Application Primary / Secondary	
Area of application	iMotion 1301, TN 110 Swing Door Operators	12859 Wetmore Road
Release	November 2008	1-888-685-3707 ww.tormaxusa.com
Use	Wiring of 1301 or TN 110 operators as a simultaneous pair	

Purpose

The purpuose of this wiring is to synchronize the 1301 or TN 110 paired operators. The application is suitable for paired operators with or without overlapping door leaves.

Function

The door leaves open at the same time when an activation signal is given (interior sensor, exterior sensor or key switch) or by push- pull on the primary. If the door leaves overlap, the secondary drive (Overlapped leaf) should have a delay(See programming table). The hold open time of both the drives is determined by the primary.

The opening and closing speeds can be individually adjusted to prevent interference between the overlapped door leaf.
The Operating mode is selected by the FCP or 3 position switch located at the primary operator
When power is lost the closing speeds are controlled by the spring.
Setting 811/812 automatically presets the necessary functions on out2 and sf 4 as well as the parameters for the primary secondary application.

Primary / Secondary wiring diagram

Optional connection if sensors are available in the closing direction

Basic connection

Optional connection if sensors are available in the opening direction

Both operators must share the same ground

Connections on the Primary operator	Connections on the Secondary operator
FOP or 3 position switch	
ReactivationA 5-6	ReactivationA 5-6
Stall,A 1-2	Stall,A 1-2
Safety Carpet / Mat, B 1-2	
Electric lock, D 1-2	Electric lock, D 1-2

Commissioning and Configuration

After wiring the operators, start-up the systems in the sequence described below.

* See page no. for Access code and Factory reset code

Primary	Secondary
1. Operator type (H11) Code : 016	
2. Door leaf Weight (H12) Code : 078	
3. Preload (H13) (See page 33)	
4. Automatic system configuration when the door is closed (H14) Code : 021	
5.Manual Teach - In (See page 34)	
6. Carry out a trial opening using SW2 (Complete several opening cycles in AUTOMATIC operating mode until H 66 is no longer displayed on FCP)	
7. Select Operating mode P (Manual Operation)	8. Operator type (H11) Code: 016
	9. Door leaf weight (H12) Code: 078
	10.Preload (H13) (See Page 33)
	11. Automatic system configuration when the door is closed . Code: 021
	12. Manual Teach - In (See Page 34)
	13. Carry out a trial opening using SW2 (Complete several opening cycles in AUTOMATIC operating
14. Code 811 = Primary	mode until H 66 is no longer displayed on FCP)
	15. Code 812 = Secondary
	16. Set hold open time codes as (100,110 and 120) $=0$
	17. Select Operating mode Automatic 1 before
18. Select Operating Mode Automatic 1 to activate	removing FCP

Revising the Teach-In.

$y \mathrm{ra} \mathrm{m} \mathrm{ir} \mathrm{P}$	y r a d n o c e S
1. Set Primary to Operating Mode Automatic 1 2. Carry out the teach-in (023). The hold-open time applies to both 3. Carry out a trial opening >button SW2 (Complete several opening cycles in AUTOMATIC operating mode until H 66 goes out (beep) on FCP).	4. Set primary to operating mode P (manual operation) and secure in the open position. 5. Set the secondary to operating mode AUTOMATIC 1 6. Carry out the teach-in. (023) 7. Carry out a trial opening >button SW2 (Complete several opening cycles in AUTOMATIC operating mode until H 66 goes out (beep) on FCP). 8. Re-enter code 812. 9. Set the primary back to operating mode AUTOMATIC 1.

Note:
The following settings are automatically specified when the codes for Primary and Secondary are set
Code 811: OUT 2 = «open + to open», S4 = opening sensor, Push \& Go = switched on, no reduction of closing speed after reversing.

Code 812: OUT2 = «Door, when opening», S4 = opening sensor, Push \& Go = switched off, no reduction of closing speed after reversing, hold-open times are zero.

T-1319e	Producer: TORMAX AUTOMATIC

T-1262 e	Connection Diagram Terminal Module MCU32-TERM-B	
Area of application	iMotion TN 110 Swing Door Drive	12859 Wetmore Road San Antonio. 7 78247
Release	July 2009	1-888-685-3707
Use	Input/Output terminal designation	

Default terminal designation.

Inputs C,D and OutputsE are programmable, see programming table for options.

Safety inputs (non programmable)

Inputs

TE: Test signal for SMR sensors (Superscan)

Stall - Will stop the door while opening and if no activation signal is being given the door will return to the closed position

Reactivation - Will reactivate the door when activated and will inhibit after door is fully closed.

Safety - Will safety the door when fully open or fully closed.

Safety stop - Will stop the door in any position.

Activator inside - Activation Signal
Activator outside - Activation Signal inhibits when FCP is in 1 way mode and the door is fully closed.

Key switch Activates the door open in all modes except P(manual mode).

Open - Will hold door open.
Auto -Automatic operation from both activators.

Off - Inside and Outside sensors are inhibited unless door is activated by Key switch input.

Electric lock - Can power up a maglock or electric strike, 1A max output.

Outputs - Electric Lock had selectable output voltage, see programming table.

Power output to Sensor is .75 Amax. Power output to lock output is 1 A max

Outputs

	Programming Table	TORMAX AUTTMMATIC 12859 Wetmore Road San Antonio,Tx78247 1-888-685-3707 www.tormaxusa.com
Area of application	iMotion TN 110 \| FW-Version V06.xx	
Download	08 April 2010	
Use	Planning, Start-Up, Maintenance	

Code	Function										Note
016	Door operator type iMotion TN110										
021	Automatic configuration (SW2: till 1. sign)										Contains 030... 7
023	Start Teach-In 1 (AUTO 1)										
024	Start Teach-In 2 (AUTO 2)										
030	--Detect reference way / Delete Teach-In 1 \& 2										
031	--Detecting and storing of safety facillities 1-4 (SW2: till 3.sign)										Safety inactive
032	--Detecting and storing MCU Lock Module 1										Check coding on module and code 572
03 3	--Detecting and storing of MCU Battery Module										
034	--Detecting and storing of MCU I/O- Module 1+2										Check coding on module
035	--Detecting and storing of MCU Power supply Module										
036	--Detecting and storing of force										Display H66
037	--Detecting and storing of MCU User interface 2										Check coding on module
038	Terminal Module: Detecting and storing of "in 1-4"										Pulse generators inactive
039	I/O Module 1: Detecting and storing of "in 1-4"										Pulse generators inactive
040	Reset										Starts program with calibration run
041	Factory Reset										All adjustments back to default values (see *)
042	Firmware version										Example: r06_00 = V06.00
043	Number of cycles										Example: c10_302 = 10'302 cycles (max. 99?999?999)
044	Number of operating hours										Example: h4_002 = 4002 hours (max.99'999'999)
$070 . . .9$	--Door mass										
090	End procedure "Installation position"										
091	Spring closing, insallation position 10°										End with code 090
$100 \ldots 9$	Hold-open time of activator in mode of op. AUTO1										
	0	1	2*	3	4	5	6	7	8	9	code
	0	0.5	1	2	3	5	10	20	30	60	sec.
$110 \ldots 9$	Hold-open time of activator in mode of op. AUTO2										
	0	1	2*	3	4	5	6	7	8	9	code
	0	0.5	1	2	3	5	10	20	30	60	sec.
$120 \ldots 9$	Hold-open time of key switch										
	0	1	2	3	4*	5	6	7	8	9	code
	0	0.5	1	2	3	5	10	20	30	60	sec.
13 0...9	Delay time Mode of op. OFF										
	0	1	2 *	3	4	5	6	7	8	9	code
	1	3	5	7.5	10	15	20	30	45	60	sec.
$140 \ldots 9$	Bell duration										0 = Duration identical to trigger duration
	0	1	2*	3	4	5	6	7	8	9	code
	=imp	0.5	1	2	3	4	5	6	8	10	sec.
$150 \ldots 9$	Bell intermission										
	0	1	2	3	4	5	6 *	7	8	9	code
	0	0.5	1	2	3	4	5	6	8	10	sec.
$160 . . .9$	Stop time after safety										
	0	1	2 *	3	4	5	6	7	8	9	code
	0	0.5	1	2	3	4	5	6	8	10	sec.
17 0...9	Runtime Battery in mode of op. 2-6										Door opens after switch-off battery
	0	1	2	3*	4	5	6	7	8	9	code
	10s	1	5	10	30	60	120	240	360	480	$\mathrm{sec} / \mathrm{min}$.
18 0...9	Runtime Battery in mode of op. OFF										
	0 *	1	2	3	4	5	6	7	8	9	code
	10s	1	5	10	30	60	120	240	360	480	$\mathrm{sec} / \mathrm{min}$.

	Programming Table	AUTTMMATIC 12859 Wetmore Road San Antonio,Tx 78247 1-888-685-3707\qquad
Area of application	iMotion TN110 \| FW-Version V06.xx	
Download	08 April 2010	
Use	Planning, Start-Up, Maintenance	

Code	Function										Note
20 0...9	Speed opening / Speed limit opening										Limitation only valid for "Teach-In 1 + 2"
	0	1	2	3	4*	5	6	7	8	9	code
	10	20	30	40	50	60	70	80	90	100	degree / s
21 0...9	Speed closing* / Speed limit closing										Limitation only valid for "Teach-In 1 + 2"
	0	1	2	3	4*	5	6	7	8	9	code
	8	16	24	32	40	48	56	64	72	80	degree / s
22 0...9	Homing-in-speed close, minimal										Angle see 42x
	0 *	1	2	3	4	5	6	7	8	9	Code
	2	3	5	8	12	17	23	30	38	47	Degree/s
230	Speed limit at manual opening										Limitation according to course of movement
23 1...9 3*	Speed limit at manual opening										1 = slow
24 0*	Speed limit at manual closing										Limitation according to course of movement
24 1...9	Speed limit at manual closing										1 = slow
26 0...9 2*	Breaking distance opening										Non-applicable after Teach, 0 = short
28 0...9 4*	Breaking distance closing										Non-applicable after Teach
30 0...9	Motor force opening										Net force on door edge
	0	1	2	3	4	5	6	7 *	8	9	code
	10	20	30	40	50	60	70	80	90	100	\%
31 0...9	Motor force closing										Net force on door edge
	0	1 *	2	3	4	5	6	7	8	9	code
	$\begin{array}{lllllll}10 & 20 & 30 & 40 & 50 & 60 & 70 \\ \text { Holding closed force }\end{array}$										\%
33 0...9											Net force on door edge > reduce if H73 after 10s!
	0 *	1	2	3	4	5	6	7	8	9	code
	0	5	7	9	11	14	19	24	32	42	Nm
$3500 . .95^{*}$	Reversing sensitivity opening										9 = max
$360 . . .95^{*}$	Reversing sensitivity closing										$9=$ max
$370 . . .97^{*}$	Push-and-Go sensitivity										9 = max, $0=$ off
$410 . .9$	Opening width reduced										Non-applicable after Teach
	0	1	2	3	4	5	6 *	7	8	9	code
	10	20	30	40	50	60	70	80	90	100	\%
$420 . . .9$	Angle for homing in speed										Homing in speed see 22x
	0 *	1	2	3	4	5	6	7	8	9	code
	0	1	2	3	5	7	10	15	20	30	degre
51 0*	Operating mode return to last setting on Function Control Panel										after terminal operating mode
51 1...6	Operating mode return to mode of op. ...										after terminal operating mode
	1	2	3	4	5	6	0	0	0	0	code
	OFF	AUT1	AUT2	EXIT	OPEN	MAN.					Mode of Operation
51	No operating mode return										after terminal operating mode
550	Locks in operating mode OFF										Only for electric strikes with 100\% Duty ratio
551	Locks in operating mode OFF, EXIT										Only for electric strikes with 100\% Duty ratio
55 2 *	Locks in operating mode OFF, AUTO 1+2, EXIT, P										
57 0 *	Electric strike: current-free locked										
571	Electric strike: current-free unlocked										Only for electric strikes with 100\% Duty ratio
57	Without electric strike										
$\mathbf{5 7} 3$	Electric strike switch-on range 100\%										Only for electric strikes with 100\% Duty ratio
58 0...9	Delay time to open										Only valid if electric strike has to unlock
	0 *	1	2	3	4	5	6	7	8	9	code
	0	0.2	0.4	0.8	1.2	1.6	2	2.5	3	4	sec.
59 1... 4	Voltage Output										
	0	1	2	3	4*	0	0	0	0	0	code
	6	9	12	15	24						V DC
600	in1: Operation mode OFF										Contact NO. NC detect with code 038.

	Programming Table	丸 $\star \star \star$ T円RMMK
Area of application	iMotion 1401 \| FW-Version V06.xx	12859 Wetmore Road
Download	08 April 2010	1-888-685-3707 www.tormaxusa.com
Use	Planning, Start-Up, Maintenance	

Coc		Function	Note
60	1	in1: Operation mode MANUAL	Contact NO. NC detect with code 038.
60	2	in1: Operation mode OPEN	Contact NO. NC detect with code 038.
60	3 *	in1: Activator inside	Contact NO. NC detect with code 038.
60	4	in1: Activator outside	Contact NO. NC detect with code 038.
60	5	in1: Key switch	Contact NO. NC detect with code 038.
60	6	in1: Emergency open except in OFF	Contact NO. NC detect with code 038.
60	7	in1: Emergency open in all modes of op.	Contact NO. NC detect with code 038.
60	8	in1: Emergency close (with locking)	Contact NO. NC detect with code 038.
60	9	in1: Operation mode EXIT	Contact NO. NC detect with code 038.
61	0...9 4*	in2: Same choice of functions as on "in1"	Contact NO. NC detect with code 038.
62	0...9 5*	in3: Same choice of functions as on "in1"	Contact NO. NC detect with code 038.
63	0...9 0*	in4: Same choice of functions as on "in1"	Contact NO. NC detect with code 038.
64	0 *	sf1: Safety opening 1 with stop function	Type of connection NO,NC,test detect with code 031
64	1	sf1: Safety opening 1 with creeping function	Type of connection NO,NC,test detect with code 031
64	2	sf1: Safety closing 1 with reversing function	Type of connection NO,NC,test detect with code 031
64	3	sf1: Safety closing 1 with creeping function	Type of connection NO,NC,test detect with code 031
64	4	sf1: Safety swing area	Type of connection NO,NC,test detect with code 031
64	5	sf1: Safety stop	Type of connection NO,NC,test detect with code 031
64	6	sf1: Emergency opening exept in OFF	Contact NO,NC detect with code 031
64	7	sf1: Emergency opening in all modes of op.	Contact NO,NC detect with code 031
64	8	sf1: Emergency closing (with locking)	Contact NO,NC detect with code 031
64	9	sf1: Mode of op. MANUAL / Break out	Contact NO,NC detect with code 031
64	A	sf1: Safety opening 2 with stop function	Type of connection NO,NC,test detect with code 031
64	b	sf1: Safety opening 2 with creeping function	Type of connection NO,NC,test detect with code 031
64	C	sf1: Safety closing 2 with reverse function	Type of connection NO,NC,test detect with code 031
64	d	sf1: Safety closing 2 with creeping function	Type of connection NO,NC, test detect with code 031
65	0...d 2*	sf2: Same choise of functions as on "sf1"	Type of connection detect with code 031
66	0...d 4*	sf3: Same choise of functions as on "sf1"	Type of connection detect with code 031
67	0...d 5*	sf4: Same choise of functions as on "sf1"	Type of connection detect with code 031
68	0	out1: Message "door closed"	
68	1	out1: Message "door closed and locked"	
68	2	out1: Message "door open"	
68	3	out1: Message "General error"	
68	4 *	out1: Bell	
68	5	out1: Message "Mode of operation OFF"	
68	7	out1: Battery in service	
68	9	out1: Message "door opening or open"	Function visible after 1 door-opening cycle
69	0...9 0*	out2: Same choice of functions as on "out1"	
70	0 *	I/O Module 1: in1: No function	Contact NO. NC detect with code 039.
70	1	I/O Module 1: in1: Operation mode OFF	Contact NO. NC detect with code 039.
70	2	I/O Module 1: in1: Operation mode AUTOMATIC 1	Contact NO. NC detect with code 039.
70	3	I/O Module 1: in1: Operation mode AUTOMATIC 2	Contact NO. NC detect with code 039.
70	4	I/O Module 1: in1: Operation mode EXIT	Contact NO. NC detect with code 039.
70	5	I/O Module 1: in1: Operation mode OPEN	Contact NO. NC detect with code 039.
70	6	I/O Module 1: in1: Operation mode MANUAL	Contact NO. NC detect with code 039.
70	7	I/O Module 1: in1: Inhibit switch	Contact NO. NC detect with code 039.
71	0...7 0*	I/O Module 1: in2: Same choice of functions as on I/O Module 1: in1	Contact NO. NC detect with code 039.
72	0...7 0*	I/O Module 1: in3: Same choice of functions as on I/O Module 1: in1	Contact NO. NC detect with code 039.
73	0...7 0*	I/O Module 1: in4: Same choice of functions as on I/O Module 1: in1	Contact NO. NC detect with code 039.
74	0 *	I/O Module 1: out1: No function	
74	1	I/O Module 1: out1: Mode of op. OFF	
74	2	I/O Module 1: out1: Mode of op. AUTOMATIC 1	
74	3	I/O Module 1: out1: Mode of op. AUTOMATIC 2	
74	4	I/O Module 1: out1: Mode of op. EXIT	
74	5	I/O Module 1: out1: Mode of op. OPEN	

	Programming Table	丸 $\star \star \star$ T円RMMM
Area of application	iMotion TN110 \| FW-Version V06.xx	12859 Wetmore Road
Download	08 April 2010	1-888-685-3707 www.tormaxusa.com
Use	Planning, Start-Up, Maintenance	

Code		Function	Note
74	6	I/O Module 1: out1: Mode of op. MANUAL	
74	7	I/O Module 1: out1: "Door opens"	
74	8	I/O Module 1: out1: "door opens + door open"	
74	9	I/O Module 1: out1: "Door closes"	
75	0...9 0*	I/O Module 1: out2: Same choice of functions as on I/O Module 1: out1	
76	0...9 0*	I/O Module 1: out3: Same choice of functions as on I/O Module 1: out1	
77	0...9 0*	I/O Module 1: out4: Same choice of functions as on I/O Module 1: out1	
78	0	Function Control Panel: in1: No function	
78	1 *	Function Control Panel: in1: Panel lock	Contact NO
78	2	Function Control Panel: in1: Mode of op. OFF	Contact NO
78	3	Function Control Panel: in1: Mode of op. AUTOMATIC 2	Contact NO
78	4	Function Control Panel: in1: Mode of op. EXIT	Contact NO
78	5	Function Control Panel: in1: Mode of op. OPEN	Contact NO
78	6	Function Control Panel: in1: Mode of op. MANUAL	Contact NO
78	7	Function Control Panel: in1: Emergency closing	Contact NO
78	8	Function Control Panel: in1: Emergency opening in all op. modes	Contact NO
78	9	Function Control Panel: in1: Key switch	Contact NO
79	0...9 0*	Function Control Panel: in 2:Same choice as on User interface 1: in1	
80	0	Bell trigger: Safety closing 1	
80	1	Bell trigger: Safety closing 2	
80	2 *	Bell trigger: Activator inside	
80	3	Bell trigger: Activator outside	
80	4	Bell trigger: Key switch	
81	0 *	Single door	
81	1	Primary	Wiring diagram see T-1319
81	2	Secondary	Wiring diagram see T-1319
82	0 *	No step by step control	
82	1	Step by step control only for key switch	
82	2	Step by step control only for actvator inside and outside	
82	3	Step by step control for actvator inside, outside and key switch	
85	0 *	No airlock function	
89	2 or 3*	Monitoring: 0=none, 1=only potentiometer, 2=only encoder, 3=both	Please ask TORMAX Support before using!

[^1]Your First Choice for Automatic Doors.

TORMAX Sliding Doas
TORMAX Swing Doos
Sales, Installation and Service. Automatic and Manual Doors.

TormaxAutomatic 12859 Wetmore Road SanAntonio, TX 78247 888-685-3707 www.tormaxusa.com

[^0]: - Fasten the printed circuit board at the predetermined points in the power-free condition.
 - Switch on the power supply only after all surrounding MCU32 modules are connected.

[^1]: * = Default value

