TORAKAAX AUTOMATIC

Installation \& Service Manual for TX9200/ TX9500 Series with 2301 \& 2401 iMotion Slide Door Drive

\&
FLUSH MOUNT

WARNING - To reduce the risk of injury of persons - Use this operator only with sliding doors.

```
TORMAX USA INC.
1 2 8 5 9 ~ W e t m o r e ~ R o a d ~
San Antonio, TX }7824
210-494-3551
210-494-5930 (Fax)

\section*{TABLE OF CONTENTS}

SECTION
PAGE
Table of Contents ..... 2
Important Information ..... 3-4
INSTALLATION
1. Header and Jamb Assembly ..... 5
2. Header/ Jamb Assembly Preparation ..... 6
3. Header/ Jamb Assembly Installation ..... 7-8
4. Header and Transom Assembly, Transom Glass ..... 9-11
5. Threshold Installation ..... 12-13
6. Bottom Door Guide Profile Installation ..... 14-15
7. O-Panel Installation ..... 16-17
8. P-Panel Installation ..... 18
9. SX Panel Preparation ..... 19
10. SX Panel Installation ..... 20
11. SX Panel Alignment ..... 21-23
12 Access Control ..... 24
13. Door Stop Adjustment ..... 25
14. Sensor Routing ..... 26
15. Primary Power Connections for TX9200-TX9500 ..... 27
16. Function Control Panel (FCP) Description/ Installation ..... 28
PROGRAMMING INSTRUCTIONS
17. Description of FCP Operating Modes ..... 29
Programming with the FCP - Examples ..... 30-31
18. Quick Start Up/ Additional Adjustments ..... 32-33
Troubleshooting ..... 34-35
Auto Configuration _- Details ..... 36
Programming Table (FW V9.2 and up) ..... 37-40
Trouble Shooting Codes Table ..... 41
Control Connection Diagram ..... 42
Connection Diagram - Sensors (IXIO, I - One, 7501) ..... 43-45
Optional Breakout Circuit/ Accessary Switches ..... 46
ANSI/ BHMAA156.10 - Sensor Walk Test ..... 47-48
Final Checklist ..... 49
TECHNICAL SPECIFICATIONS
Technical Data (T-1258e) ..... 50
Cable Plan (T-1277e) ..... 51
Control Unit Module (T-1259e) ..... 52-53
Motor Unit Module (T-1274e) ..... 54-55
Lock Unit Module (T1265e) ..... 56-57
Battery Unit Module (T-1268e) ..... 58-59
Power Supply Module (T-1269e) ..... 60-61
Base Module (T-1261e) ..... 62-63
Function Control Panel (T-1264e) ..... 64-65
Input/ Output Module (T-1360e) ..... 66-67

\section*{IMPORTANT INFORMATION}

\section*{SAFETY/ WARNINGS SYMBOLS}

NOTE indicates important information specific to the process or steps being performed.

ELECTRICAL VOLTAGE indicates that electrical voltage is present and that caution should be taken to prevent injury or property damage.

CAUTION indicates failure to follow instructions may result in personal injury and/ or property damage.


OPTIONAL COMPONENTS indicates components that are not installed in all systems.

WARNING - Failure to observe the information in this manual may result in personal Injury or damage to equipment. To reduce the risk of injury of persons use this operator only with pedestrian sliding doors.
Save these instructions for future reference.

\section*{Installation and Service}

Any and all TORMAX equipment must be installed, serviced and inspected by an AAADM Certified technician, to meet the current ANSI A156.10 and any local or state building codes.

The person responsible for the daily operation and maintenance of the system is referred to as "End-User".

\section*{今}

It is the technicians responsibility:
1. Review the functions of the equipment with the end-user. Failure to do so, may lead to the improper use, could cause injury to persons and/ or damage to the equipment.
2. Familiarize the end-user with the Daily Safety Check Decal and how to perform the walk test procedures.
3. Illustrate to the end-user how to place the door out of service (turn off power or place in P mode or OFF mode of operation), if the equipment does not perform as described in the Daily Safety Check Decal.
4. Recommend to the end-user to have their equipment inspected annually by an AAADM certified technician.

\section*{Glazing}

The glazing material of all doors shall comply with the requirements of ANSI Z97.1, American National Standard Performance Specifications and Methods of Test for Safety Glazing Material Used in Buildings.

\section*{IMPORTANT INFORMATION}

\section*{Electrical Requirements for Installation Personnel}

Have a licensed electrician:
- Make all mains primary power connections in accordance to federal, state and local regulations.
- Route mains primary power from power distribution panel (10 amp circuit breaker minimum per operator) to the operator.
- Install a service switch or emergency shut OFF switch, if required by customer or per regulations. This is in addition to the mains circuit breaker to interrupt power, switch must be rated @ 10 amp minimum.

\section*{Mains Connection}

Connection: N + L1 + PE protected on site with fuse 10 AT, protective earth necessary.

\section*{Power rating:}
iMotion 2202, 2301: \(1 \times 230 / 1 \times 115 \mathrm{VAC}(+5 \% /-10 \%), 50-60 \mathrm{~Hz}\), max. 190 W
iMotion 2401: \(1 \times 230 / 1 \times 115 \mathrm{~V} \mathrm{AC}(+5 \% /-10 \%), 50-60 \mathrm{~Hz}\), max. 310 W
Supply cable: Type H05VV-F, H05RR-F or type S, SO, SJ, SJO, ST, STO, SJT, SJTO or AFS

今
Before beginning the work described below, check that the mains primary power is switched off. If required, place "Out of Service" tag on breaker or service switch.

\(\triangle\)
It is recommended that any item (i.e. electrical box, conduit) be installed in the header away from moving door components, so not to interfere with the operation of the door.

- Route mains cable (1) through provided cable holders to mains supply (3).
- Check the correct setting of the voltage selector (2).
- Do not apply power to the door until ready for commissioning.
- A system switch (FCP or 3-position switch) must be on site.


Make sure that the mains cable is secured properly to prevent interference with moving parts of the operator or door system.


The commissioning of the system may only take place through a qualified person trained by the manufacturer and under consideration of the required documents for commissioning and inspection for compliance!

\section*{HEADER AND JAMB ASSEMBLY}
1) Concealed \(O\) panel \& Surface \(P\) panel applications - Install T-Nut Post into channel on lower edge of header. Post shipped in hardware box.
2) Doors with transom, proceed to Page 9, 10 for assembly.

T-Nut Post for securing Concealed O Panels \& Surface P-panels

3) Mount the jambs to the header using the supplied hardware as shown below.

Flush

4) Install LH/ RH trim plates onto header end bracket with supplied nuts.

5) TX9500 \& TX9200 single slides with jamb mounted Doorway holding beams, route beam cables into and down the jam, connect the beam pigtails.

Inspect \& note O or P panel beam locations, install opposite Black (TX) cable and Gray
(1) (RCVR) cable in jamb. i.e. Black cable across from a Gray cable.


\section*{HEADER AND JAMB ASSEMBLY PREPARATION}
6) Concealed mount: "snap" in back plate onto the jamb, Surface mount: do not install at this time, first secure jamb to the wall.

7) Pre- drill the header prior to lifting the unit into place. The hole locations is dependent on the application (Concealed, Surface, Flush).


CONCEALED


SURFACE


FLUSH
8) Concealed mount - Minimum of 6 holes should be drilled through the header The holes should be located at both ends and in the center.

9) Surface \& Flush mount - Holes should be drilled through the header spaced 24 " minimum. With the first hole within 12 " from the jamb.


\section*{HEADER/JAMB ASSEMBLY INSTALLATION - CM}
1) Determine the highest point of the floor by using a water level. See Illustration 1. Make note of this point.

Recommend securing the jambs at 3 locations (top, bottom, center) as work environment permits. Select a location to limit visibility on final assembly.

Caution should be taken when lifting assembly into place and should never be done by one person.
2) Lift the header/ jamb assembly into place, level the header according to the floor conditions using appropriate shimming material.
3) Plumb the jambs in both directions. See Illustration 2
4) Type of fasteners and securing locations of the jambs will depend on the work environment. It is suggested that the jambs be secured at three locations. Also, that the fasteners be located to limit visibility on the final assembly.
5) In the event there is nothing to mount the jamb to vertically an L-bracket can be installed at the bottom of the jamb. Install bracket to provide the most support in the least visible location possible. See Illustration 3.
6) If equipped, snap in Jamb filler profile. See Illustration 3.

Illustration 1


\section*{Illustration 2}


Illustration 3


\section*{HEADER/JAMB ASSEMBLY INSTALLATION - SM/ FM}

Caution should be taken when lifting assembly into place and should never be done by one person.
1) Recommend securing the jambs at 3 locations (top, bottom, center) as work environment permits. Drill holes through jamb side wall adjacent to the wall.
2) Lift the header/ jamb assembly into place, level the header according to the floor conditions using appropriate shimming material.
3) Check both jambs for plumb and square. Check header width at top and bottom of the jambs for proper spacing.
4) Type of fasteners and securing locations of the jambs will depend on the work environment.
5) In the event there is nothing to mount the jamb to vertically, a L-bracket can be installed at the bottom of the jamb. Install bracket to provide the most support in the least visible location possible.
6) Snap jamb back plate onto the jamb.


\section*{HEADER \& TRANSOM ASSEMBLY}
(I Install T-Nuts into channel on top of header before attaching jambs.
T-Nuts used for securing Transom Intermediate Vertical Bracket (G). Check Accessory Pack for Hardware!
1) Insert T-nuts, attach Jambs (B) to Header (L) with hardware as shown below.

2) Make appropriate clearance hole /s for 120 V electrical power cable.
3) If equipped with jamb mounted photo electric (safety) beams, check SO panel beam locations black and grey cables. Route cables down the jamb and connect beams as shown.
4) Snap jamb tube back plate (A) onto jamb (B).


The factory will install Horizontal Header Insert (D) into the Horizontal Header Pocket (C) and Snap in Gutter (E) into Transom Vertical (F), same as jamb extrusion.
5) Drill a securing hole (size depends on mounting screw) through both Horizontal Header Insert (D) and the Horizontal Header Pocket (C) .
6) Drill a larger clearance hole into the Horizontal Header Insert (D), so that the screw can pass through and secure the Horizontal Header Pocket (C).

\section*{HEADER \& TRANSOM ASSEMBLY}
(1)

The Snap in Gutter (E) and Transom Vertical (F) have 2 pocket sizes. Never have two (F) assemblies (shallow to shallow) facing each other. Glass will not fit.
7) Determine intermediate vertical locations by placing Transom gutter (H) onto the header, verify spacing with openings in Horizontal Header Pocket. Move T-Nuts between Transom Gutter (H).
8) Position L-Bracket so header mounting screw is on deep pocket side of intermediate vertical assembly (F). Loosely secure L-Bracket (G) onto the header (L).
9) Install and secure intermediate vertical assembly (F) onto L-Bracket with two supplied screws.
10) Snap in Transom Gutters (H), Center intermediate vertical assembly (F), tighten screw into header T-Nut. Install remaining intermediate verticals.
11) Install Horizontal Header Pocket (C) onto jambs (B) and intermediate vertical assembly (F).

Caution should be taken when lifting assembly into place and should never be done by one person.
(1)

Refer to page 7 for details in installing and securing the door package.


\section*{TRANSOM GLASS - TRANSOM ASSEMBLY DETAIL}
(I) Glass cleaner can be used as a lubricant to install the vinyl \((M, N)\)
1) Install appropriate glazing block (I-1" glass, J-1/4" glass) onto (H).
2) Install the glass by placing it into the deep pocket on the vertical jamb, once glass clears opposite side vertical, center between pockets and place on glazing blocks.
3) Install transom face stop (K) on header and finish by installing the appropriate vinyl ( \(\mathrm{M}-1 / 4\) " glass, \(\mathrm{N}-1 /\) " glass).


\section*{Transom Assembly Detail}

A) US800958 Jamb Tube Back Plate
B) US800956 Jamb Tube
C) US800829 Horizontal Header Pocket
D) US800828 Horizontal Header Insert
E) US800957 Snap in Gutter
F) US800956 Transom Vertical , Jamb extrusion
G) US801048 Transom Vertical Bracket
H) US801041 Transom Gutter, top of header
I) US801044 Glazing Block 1" glass
J) US801043 Glazing Block 1/4" glass
K) US801042 Transom Face, top of header L) US801619 Header
M) US801051 Transom Vinyl, 1/4" glass
N) US800822 Transom vinyl, 1" glass


\section*{THRESHOLD INSTALLATION}
1) If using a Combination threshold align the threshold to the interior edge of the jamb. See Illustration 1.
2) If using a Double Beveled or Recessed threshold center the threshold to the jamb. See Illustration 1.
(1) Use a chalk line from jamb to jamb to create a reference line.
3) The threshold must be secured to the floor using the appropriate fasteners for the type of floor. Fasteners should be spaced 18" apart for the length of the threshold, starting 1 1/2" from each end. See Illustration 2.
4) If required use appropriate shim material to level the threshold as shown below. Measure from the top of the threshold to the bottom of the header in 18 " inch increments the full width of the header to insure the header and threshold are parallel to each other.
5) The threshold must be supported through its entire length. Mortar works best where a large gap is present, as the threshold could become deformed over time and interfere with door operation.

©If a trip hazard is created by leveling the threshold then the transition should be eased to eliminate this hazard.

\section*{Illustration 1}


\section*{THRESHOLD INSTALLATION - TX9500 FLUSH MOUNT}
1) Shim the threshold \(1 / 8\) " off the wall as shown below.
2) Level the threshold and check the distance to the header for proper clearance of the door panel.
3) Secure the threshold with appropriate hardware and shim as needed.


\section*{BOTTOM GUIDE PROFILE INSTALLATION - CONCEALED}
(1)

Proper installation of the bottom door guide track is critical to the operation of the sliding door panel and the premature wear of the bottom guide.
1) Create a reference line from jamb to jamb with a chalk line. Place chalk line on interior edge of jambs.
2) Concealed mount - the bottom guide profile is located \(1 / 2\) " off the chalk line, inside the jambs. See Illustration 1.
3) Surface mount - the bottom guide profile is to be located to the rear of the jamb tube/ s adjacent to the wall. See Illustration 2.
4) Flush mount - utilizes the bottom guide in the threshold. See Illustration 3.
5) Secure the bottom guide profile to the floor or threshold utilizing the appropriate fasteners.
6) To insure that the bottom guide profile is parallel to the header, measure in several locations from the bottom of the header to the top of the bottom guide profile to the header. Support profile the entire length.
(!)
On some models the bottom guide profile is machined across the top on one end. Locate machined edge towards the door opening.


\section*{BOTTOM GUIDE PROFILE INSTALLATION - SURFACE/ FLUSH}

\section*{Illustration 2}

> Surface Mount


Flush Mount


\section*{Illustration 3}

Flush Mount


\section*{O-PANEL INSTALLATION TX9200/ TX9500 - CONCEALED MOUNT}
(1) The factory routes the photo electric (safety) beam cables from the control to the end of the header and down into the Comdor channel.
1) TX9200 - Pull zip tie with beam cables through hole in Comdor cover and route into O-Panel leading stile.
2) Place the O-Panel onto the bottom guide profile and tilted into place. Secure the O-panel with \((1 / 4 "-20)\) nut on header mounting post. See Illustration 1
3) Tighten O-Panel \(1 / 4\) " set screw ( \(1 / 2\) "-13) through the header into the top door rail. See Illustration 1.
4) TX9200 - Install beams into Lead Stile brush holder (P/N US801611). Connect beam heads to cables and snap lead stile holder into lead stile of O-Panel.
5) TX9500 - Install weather stripping (P/N140491) as shown. Be sure to apply a \(1 / 4\) " bead of clear silicone to hold brush holder in place.


\section*{O-PANEL INSTALLATION TX9200/ TX9500 - SURFACE MOUNT}

(1)The factory routes the photo electric (safety) beam cables from the control to the end of the header and down into the Comdor channel.
1) TX9200 - Pull zip tie with beam cables through hole in Comdor cover and route into O-Panel leading stile.
2) The O-Panel will slide onto the bottom door guide profile, while aligning the door with the factory installed alignment discs on the Comdor Cover.
3) TX 9200 - Remove glass stops and gutter, drill and prep door stile for flat head screw(s). Screw to the jamb.
4) Drill and prep bottom door rail or shoe in two places for flat head screw into bottom door guide. Screw must be placed, so not to get into the bottom guide track and damage the bottom guide.
5) TX9200 - Install beams into Lead Stile brush holder (P/N US801611). Connect beam heads to cables and snap lead stile holder into lead stile of O-Panel.
6) TX9500 - Install weather stripping (P/N140491)as shown. Be sure to apply a \(1 / 4\) " bead of clear silicone to hold brush holder in place.


1/4" Bead


140491

\section*{P-PANEL INSTALLATION TX9200/ TX9500 - SURFACE MOUNT}

(1)
The factory routes the photo electric (safety) beam cables from the control to the end of the header and down into the Comdor channel.
1) Pull zip tie with beam cables through hole in Comdor cover and route into P-Panel leading stile
2) Place the P-Panel Stile onto the bottom door profile and slide into place. Secure top of P-Panel stile with spacer \& nut on header mounting post.
3) Install T-nut into bottom door profile top channel, insert 3/8"/ 10 mm hex head bolt through "L" bracket, loosely screwing into T nut.
4) Position P-Panel stile adjacent to L-bracket, insert two Philips head screws through the back of the stile into L-bracket.
5) Plumb stile/ bracket, tighten \(3 / 8\) "/ 10 mm hex head bolt
6) Install beams into Lead Stile brush holder (P/N US801611). Connect beam heads to cables and snap lead stile holder into P-Panel.
7) Install P-Stile Cover (P/N 140951) into P-Panel and Door Guide Cover ( \(\mathrm{P} / \mathrm{N} 141012\) ) into Bottom Guide Profile.


\section*{SX-PANEL PREPARATION}
1) Install the appropriate bottom door guide onto the back rail of the SX-Panel with supplied hardware.
2) TX9200 - If equipped with door sweeps, install the pre-assembled sweep/ holder assembly into the bottom of the door and secure with supplied set screw.
3) TX9500 - If equipped with door sweeps, install the pre-assembled sweep/ holder by pressing or tapping into the bottom of the door.

(1)
The door sweep may differ from that shown, depending on the application.

\section*{TX9200}


\section*{TX9500}


\section*{SX-PANEL INSTALLATION}
(1)

Cross blocking the glass in the door will provide additional support when the SX panel is placed in the breakout position.
(1)

The trolleys with attached belt brackets are shipped with anti-risers tight against the track to prevent damage in shipment. Remaining trolleys are shipped in Accessories box.
1) Loosen anti-risers to re-position the trolleys. Adjust the height adjustment screw to lower the trolley, as this will help when lifting the door into place.
2) Loosen the two 13mm mounting bolts on top of the SX-Panel until only two threads are engaged.
3) Position the door so that it will slide behind the drive unit (control \& motor), as you insert the bottom door guide into the bottom door guide profile or guide channel.
4) Lift door up onto the trolley and tighten panel 13 mm mounting bolt.

(!)
TX9500 - Do not install the SX lead brush P/N 140488 1/2" Pile Seal until doors have been installed and adjusted


\section*{SX-PANEL ALIGNMENT}
(D) The alignment of the SX-Panel is critical to the functionality of the sliding door.
1) Loosen the 13 mm locking bolts slightly to allow for panel adjustment.
2) Adjust the 8 mm door height screw to position the door at the proper operating height and to level the door panel.

3) Fine adjust the door height to line up the sight lines.
4) Tighten the 13 mm locking bolts.



Correct

\section*{SX-PANEL ALIGNMENT}
1) Loosen 13 mm mounting bolts on top of carrier.
2) Adjust the \(S X\) door panel so that it is parallel to the header and does not make contact (minimizing drag) with the weather seal on the header. Tighten 13 mm bolt. See details below.
3) Check the breakout swing of the door.

Concealed/ Surface


Flush



\section*{SX-PANEL ALIGNMENT}
4) Adjust anti-riser 17 mm wrench/ 5 mm Hex key for a gap of .020 " ( approximately the thickness of a credit card) between the roller and the track.

5) In the door closed position, loosen door sweep set screws, adjust the door sweep(s) to make slight contact with the floor. Re-tighten set screws.

6) Slide the door panel(s) open and close, checking for drag on the door panel(s). The door panels should slide open \& closed freely with two finger pressure. Repeat above steps to eliminate any drag.

\section*{ACCESS CONTROL ASSEMBLY}
(!) If the door was ordered with the access control feature, the major components (panic device, electric lock) are pre-installed at the factory. Adjustments will need to be made.
1) The door in the closed position, check the alignment of the lock module with relationship to the locking pins located on top of the trolleys).
2) Loosen the (4) 4 mm Hex head bolts securing the lock module, loosen the 10 mm bolts securing the locking cam brackets.
3) Adjust locking cams) and lock module for a minimum clearance of \(1 / 32\) " between locking plate and cams). Secure lock module and cam brackets.

(1)At no point should the locking cams come in contact with each other or the locking plate.

\section*{Electric Lock}

1) The SX Panel door stop should be adjusted to provide a 1" gap (Finger Protection) between SX Panel and O-Panel/ P-Panel.
2) To increase the finger guard distance, move the stop towards the door opening direction.
3) To decrease the finger guard distance, move the stop towards the door closing direction.


\section*{SENSOR ROUTING}
(I) Refer to the sensor manual for maximum mounting height from the floor. The maximum mounting height on the header is 2 " measured from the bottom of the header.
1) Determine the center of the Clear Door Opening, align and apply sensor template onto the header drill hole for wire routing.

2) Insert sensor cable through factory drilled holes in the header as shown below and route to the control.

3) Route sensor cable through the header to the control. Keep cables clear of any moving parts. Recommend zip tie cable to 1st plastic clip inside the header for non-cover side sensor.

Do not connect sensor cables to the control at this time. Sensors will be connected after setup is complete.

PRIMARY POWER CONNECTIONS FOR TX9200 - TX9500

今
All primary electrical connections should be completed by a licensed electrician! The unit requires 115 VAC as primary power.
1) Remove power plug by pressing red locking tab to make 115 VAC primary power connections.
2) The factory changes voltage selector switch to 115 . When replacing a control in the field the technician needs to check the selector switch.
3) Insert power plug when ready to perform teach-in, programming and overall performance check.


\section*{FUNCTIONAL CONTROL PANEL (FCP) DESCRIPTION / INSTALLATION}

(1)The Functional Control Panel (FCP) is the interface between the door system and the end user/ technician. The FCP will be factory installed on the non-cover side of the header or field installed in a remote location dependent on customer requirements.


\section*{The FCP has 2 function levels:}

Level 1 - End user
- Select operating modes
- Display three-digit fault codes.
- Access protected eliminates unauthorized programming.

Level 2 - AAADM Certified technician
- Access protection, access code (111)
- Programming door system to comply with the current ANSI 156.10 standard.
- Displays currently set parameter.
- 10 min time out after the last programming entry is made.


\section*{DESCRIPTION OF FCP OPERATING MODES}

The 6 modes of operation is selectable on the Functional Control Panel (FCP) by utilizing buttons 1 or 2 . Button 1 moves LED clockwise, button 2 moves counter clockwise.


\section*{(0-) OFF Mode}

The interior and exterior sensors are inhibited after the door reaches the fully closed position, if equipped with an electric lock the lock will engage. Key switch input will open the door, when activated.

Automatic 1 Mode
Two-way traffic, typical setting for normal operation. This setting allows interior \& exterior sensors, key switch and safety device to operate the door.


Automatic 2 Mode (Reduced Opening)
Allows the door to open with a reduced opening width. Door opening width and hold open time can be adjusted. Hold open time adjustment separate from Automatic 1 mode.
(1) EXIT Mode

Allows interior activation and key switch inputs to operate the door system. Exterior activation input is inhibited in door closed position, but becomes active when door is operated by interior activation or key switch inputs.HOLD - OPEN Mode
Hold the door system open.

\section*{MANUAL OPERATION (P) Mode}

Allows the door to be used manually without the use of sensors, push and pull activation. Indicates when the door is in panic/ break-out position.

The technician will clearly explain and demonstrate the modes of Operation to End user.

\section*{PROGRAMMING WITH THE FCP - EXAMPLES}

(1)Button 1 - Increments the number or letter by one (0-9,a,b,c,...back to 0) Button 2 - Confirms or enters the displayed character into the control
(I) Place FCP display into "P" Park/ Manual mode during programming refer to illustration on page 28.

\section*{1) Start Access Code}


Release both buttons immediately
2) Entering Access Code 111
A) Select the number " 1 " with button 1 , confirm/ enter with button 2.
B) Repeat this step two more times entering the code 1-1-1.
C) A letter "P" will display indicating in Program mode.


Example 1: Enter access code 111


(D)Time out occurs, if no input is made during 10 s , the FCP reverts back to displaying P, then displays the operating mode.

Within 10 minutes you can enter the programming mode by pressing both keys simultaneously and \(P\) will display. If no further adjustments are made after 10 minutes the FCP will time out and require access code re-entry. Repeat example 1.

\section*{PROGRAMMING WITH THE FCP - EXAMPLES}

\section*{3) Start Programming Level}

Example 1: Enter code 030 to Detect and store reference distance


A Reference open/ close cycle will be performed, upon activation

Example 2: Enter code 036 to Detect and store door mass (weight)


After the 2nd code digit has been confirmed, the flashing digit show set value of the parameter (= 3rd digit of the parameter code). If the value is confirmed the FCP will rapidly flash for 1 sec then display " \(P\) " again.

Quickly pressing and releasing both buttons simultaneously the FCP will return to displaying the mode of operation.

\section*{QUICK START UP}

The control will be factory programmed to the function of the application.
Do not perform a factory reset or an Auto-configuration.

\section*{Requirements prior to POWER UP}
- Check all fasteners for security.
- Wire routing \& connections, LIN - BUS connections are complete and clear of moving parts.
- Do not connect Overhead Sensors to the door control.
- If equipped, connect battery back-up module 8 pin connector to Power Supply board.
- If equipped, with an electric lock check electrical connection (lin-Bus) and for proper clearances between lock and locking posts.
- All mechanical adjustments completed: SX sliding panel adjustments: height adjustment, door sweep height adjusted, no rubbing against weather seals, Bottom Guide/ s, Anti-riser/ s, panel/s move freely/ two finger pressure.

\section*{POWER UP - NOTE SAFETIES ARE NOT FUNCTIONING AT THIS TIME. YOU MUST \\ PROHIBIT TRAFFIC FLOW UNTIL COMPLETED. IF YOU CAN NOT STOP TRAFFIC FLOW THROUGH THE DOOR, USE THE SW2 FOR REACTIVATION.}

The control should have jumpers placed into terminal A pins 2, 3 and 6, 7 and terminal \(B\) pins 2, 3 and 6,7 as shown below. Confirm that all four LED are illuminated, if not reset jumpers.


Learn Mode - full open/ closed door positions and door panel weight
1. Check that input in 4 terminal \(D\) pins 4,5 LED is "ON", if not:
A. Change ON/ OFF, ON/ OFF/ HO switch position till LED illuminates as shown above.
B. If equipped, check breakout beam circuit, beams mounted on the jamb.
2. Enter Code 030, 036 into the FCP display. Reference manual for programming codes with FCP.
3. Change operating mode to "AUTO" on the FCP display.
4. Push-n-release SW2 button to activate the door open. Note code H65 will display until complete.
5. Repeat step 4 after Output 2 LED illuminates upon door closing. The process can take up to 14 activations. An audible tone will sound from the control when complete. Troubleshooting.

\section*{QUICK START UP/ ADDITIONAL ADJUSTMENTS}

SW2 Switch is the small blue button on the control to activate the door if pushed momentarily. When used to activate the door there is no hold open time, door goes fully open and closes immediately.

6. Remove jumpers from safety inputs ( \(\mathrm{sf} 1,2\) ) A terminal pins \(2,3 \& 6,7\). Check LEDS for \(\mathrm{sf1}, 2\) remain "ON". If LEDs remain ON then test photo beam operation during door closing. If LEDs go "OFF" then check photo beams are not blocked, all connections are secure and no pinched wires).
7. Connect self-monitored sensors into terminal B (sf3,4) refer to sensor connection diagrams (pages 41-43) for connections and configuration settings. Remove jumpers on B terminal pins 2,3 \& 6,7. Check function, operation and adjust the sensors in accordance to ANSI/ BHMA A 156.10 standard.

\section*{Additional Adjustments}

Below are frequently used adjustments, refer to the Programming Charts section for a more detailed list.


Always inspect and adjust the installation to be in accordance with the current ANSI/ BHMA A156.10 standard.
Test all FCP functions for proper operation.

\section*{TROUBLESHOOTING}

Troubleshooting - New installations
If the door is running backwards, FCP in HOLD OPEN door physically closed, FCP in OFF (red key) door is physically open.
1. Enter the code listed below for door type to change motor rotation.
(Code 080)
\begin{tabular}{|l|c|c|}
\hline Motor Rotation & Clockwise & Counter Clockwise \\
\hline Door Type & TX9200 Bi-Part, & TX9200 Left Hand \\
Right Hand Single Slide & Single Slide \\
\hline
\end{tabular}

If the FCP is displaying an E33, E39 error code perform the following.
1. Check that jumpers are in all the safety inputs and that LEDs are "ON", disconnect all sensors. Enter the code 031.

If the FCP is stuck in the P-mode of operation and can not be changed.
1. Check that in4 D terminal, that the LED is "ON", if so Enter code 038. If LED is "OFF" check ON/ OFF or ON/ OFF/ OPEN switch position or if equipped with breakout beam check for proper operation.

If the FCP is stuck in the OFF-mode of operation and can not be changed.
1. Check that in4 D terminal, that the LED is "ON", if so Enter code 038. If LED is "OFF" check ON/ OFF or ON/ OFF/ OPEN switch position.
(1)

If the door does not function correctly with sensors connected (sensors stop the door during opening) check the settings below with the FCP display. To check the settings enter the first two values (function code), the third flashing value (setting), if the setting value does not match value listed then change to the value shown below.

Example: Enter function code 63, if " 1 " is flashing then let the FCP time out and return to P display.

Example: Enter function code 63 , if " 0 " is flashing then change to " 1 ", enter the value.
\begin{tabular}{|l|l|l|}
\hline 63 " 1 " & Input in4, D terminal pin 4,5- (1) = Operation mode MANUAL (FCP=P) & 038 \\
\hline 65 " 2 " & Input sf2, A terminal - (2) = Safety Closing 1 with reversing function & 031 \\
\hline 66 "C" & Input sf3, B terminal - (C) = Safety Closing 2 with reversing function & 031 \\
\hline 67 "C" & Input sf4, B terminal - (C) = Safety Closing 2 with reversing function & 031 \\
\hline
\end{tabular}

If any of the functions were changed then verify that the input LED /s are ON:
For sf1, sf2, sf3, sf4 -Enter code 031
Contact Tormax Technical support for troubleshooting assistance

\section*{TROUBLESHOOTING}

Existing installations - Contact Tormax Technical support for troubleshooting assistance and prior to performing a factory reset as it is for extreme cases.
1. Factory Reset - Enter Code 041, (H11 = Operator Type not Defined)

FCP will display H11 = operator type not defined
2. Operator Type - Enter Code
\begin{tabular}{|l|c|c|}
\hline Control Type & 2301 & 2401 \\
\hline Program Code & 011 & 012 \\
\hline
\end{tabular}

FCP will display H 14 until entire process is complete
3. Breakout function if equipped - Determine which input terminal the breakout beam or ON/OFF/OPEN switch is wired into. Input LED has to be illuminated before entering codes.
\begin{tabular}{|l|c|c|}
\hline IN4, D terminal pins 4,5 & 631 & 038 \\
\hline \(\mathrm{sf4} 4, \mathrm{~B}\) terminal pins 5,6 & 679 & --- \\
\hline
\end{tabular}
4. Safety Functions - Beams in A terminal and Overhead sensors. (i-One, Eagles, motion sensors) No change needed.
5. Safety Functions - Beams and overhead combination sensors.(7501, IXIO, i-oneX T) All safety devices should be setup for normally closed, all safety input LED ON. Enter Codes
\begin{tabular}{|l|l|}
\hline 65 "2" & Input sf2, A terminal - (2) = Safety Closing 1 with reversing function \\
\hline 66 " \(\mathrm{C} "\) & Input sf, B terminal - (C) = Safety Closing 2 with reversing function \\
\hline 67 "C" & Input sf4, B terminal - (C) = Safety Closing 2 with reversing function \\
\hline
\end{tabular}
6. Place FCP in P manual mode, manually open the door to the full open position.
7. Automatic Configuration - Enter Code
\begin{tabular}{|l|c|c|}
\multicolumn{1}{c|}{\begin{tabular}{c} 
Press SW2 for 1 Beep \\
\multicolumn{1}{c|}{} \\
(Code 021)
\end{tabular}} & \begin{tabular}{c} 
Press SW2 for 2 Beep \\
(Code 022)
\end{tabular} \\
\hline Motor Rotation & Clockwise & Counter Clockwise \\
\hline \multirow{2}{*}{ Door Type } & Bi-Part, Left Hand & Right Hand \\
& Single Slide & Single Slide \\
\hline
\end{tabular}
8. Place the FCP to Auto Mode and allow the door to fully close, H64 will display. Activate the door by momentarily pressing the SW2 button located on the control. Continue to activate the door with the SW2 button until the " H " learn codes clear and an audible beep tone. Maximum number of cycles 14.
9. Adjust additional functions such as hold open, closing speed, closing check speed... as shown on page 32.

\section*{AUTO CONFIGURATION - DETAILS}

Automatic configuration consist of the following activities in programming:
\begin{tabular}{ll} 
SF1 - SF4 & \begin{tabular}{l} 
The contact type (NO or NC) and monitoring if applicable \\
will be automatically detected. Make sure sensor zones \\
are clear and not in detection.
\end{tabular} \\
Lock Unit & \begin{tabular}{l} 
The functioning Lock is automatically detected and set to \\
default operation. See programming table for options.
\end{tabular} \\
MCU32-LOCU & The functioning Battery back-up is recognized if connected. \\
Battery Unit \\
MCU32-BATU & \begin{tabular}{l} 
The functioning I/O module is recognized and saved via the \\
LIN Bus, if the module is connected and coded as module 1 or 2.
\end{tabular} \\
\begin{tabular}{ll} 
Input / Output Module \\
MCU32-INOU-A
\end{tabular} & \begin{tabular}{l} 
The FCP is recognized and saved via the LIN Bus, if \\
connected and coded (1 or 2). The FCP is detected
\end{tabular} \\
immediately when connected to the LINE Bus input of control. \\
Functional Control Panel
\end{tabular}

Automatic configuration process consists of cycling the door open and closed until all programming activities are complete. The learning process lasts for a maximum of 14 cycles. The FCP displays "H" codes as a visual aid through the process. When the learn process is complete an audible tone from control and " H " codes on FCP will stop being displayed.

\section*{PROGRAMMING TABLE}
(D) Most common parameters used are highlighted. * Indicates Default Value
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Co & & \multicolumn{16}{|l|}{Function} & Note \\
\hline 01 & 1 & \multicolumn{16}{|l|}{Door operator type iMotion 2301} & \\
\hline 01 & 2 & \multicolumn{16}{|l|}{Door operator type iMotion 2401} & \\
\hline 02 & 1 & \multicolumn{16}{|l|}{Automatic configuration: All Bi-Part, TX9200/ 9430 RH SS, TX9300/ 9420 LH SS} & (SW2: hold 1 Beep) Contains 030...7, 07x, 08x \\
\hline 02 & 2 & \multicolumn{16}{|l|}{Automatic configuration: TX9200/ 9430 LH SS, TX9300/ 9420 RH SS} & (SW2: hold 2 Beeps) Contains 030...7, 07x, 08x \\
\hline 03 & 0 & \multicolumn{16}{|l|}{--Detect and store reference way} & \\
\hline 03 & 1 & \multicolumn{16}{|l|}{--Detecting and storing of safety facillities 1-4} & (SW2: hold 3 Beeps) Safety inactive \\
\hline 03 & 2 & \multicolumn{16}{|l|}{--Detecting and storing MCU Lock Module 1} & Only with code 572. Check coding on module. \\
\hline 03 & 3 & \multicolumn{16}{|l|}{--Detecting and storing of MCU Battery Module} & \\
\hline 03 & 4 & \multicolumn{16}{|l|}{--Detecting and storing of MCU I/O- Module 1+2} & Check coding on module \\
\hline 03 & 5 & \multicolumn{16}{|l|}{--Detecting and storing of MCU Power supply Module} & \\
\hline 03 & 6 & \multicolumn{16}{|l|}{---Detecting and storing of Door mass} & Display H65 \\
\hline 03 & 7 & \multicolumn{16}{|l|}{--Detecting and storing of MCU User interface 2} & Check coding on module \\
\hline 03 & 8 & \multicolumn{16}{|l|}{Terminal Module: Detecting, storing "in 1-4" (NO,NC,100Hz)} & Pulse generators inactive \\
\hline 03 & 9 & \multicolumn{16}{|l|}{I/O Module 1: Detecting, storing of "in 1-4" (NO, NC)} & Pulse generators inactive \\
\hline 04 & 0 & \multicolumn{16}{|l|}{Reset} & Starts program with calibration run \\
\hline 04 & 1 & \multicolumn{16}{|l|}{Factory Reset} & All adjustments back to default values (see *) \\
\hline 04 & 2 & \multicolumn{16}{|l|}{Firmware version} & Example: r06_00 = V06.00 \\
\hline 04 & 3 & \multicolumn{16}{|l|}{Number of cycles} & Example: c10_302 = 10'302 cycles (max. 99?999?999) \\
\hline 04 & 4 & \multicolumn{16}{|l|}{Number of operating hours} & Example: h4_002 = 4002 hours (max.99'999'999) \\
\hline 04 & 5 & \multicolumn{16}{|l|}{Delete fault protocol} & \\
\hline 04 & 6 & \multicolumn{16}{|l|}{Address of control unit for network} & Example: A1 = address no. 1 \\
\hline 06 & 0 * & \multicolumn{16}{|l|}{Control without FRW} & FRW = Equipment for rescue and escape routes \\
\hline 06 & 1... 8 & \multicolumn{16}{|l|}{Functions with FRW} & \\
\hline 07 & 0... 9 & \multicolumn{16}{|l|}{--Door mass} & Automatic detection contained in 021 / 022 \\
\hline 08 & 0... \(10^{*}\) & \multicolumn{16}{|l|}{--Rotating direction of drive} & 0 contained in 021 / 1 contained in 022 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{10 0...F}} & \multicolumn{16}{|l|}{Hold-open time of activator in mode of op. AUTO1} & \\
\hline & & 0 & 1 & 2* & 3 & 4 & 5 & 6 & 7 & 8 & 9 & A & b & C & d & E & F & code \\
\hline & & 0 & 0.5 & 1 & 2 & 3 & 5 & 7.5 & 10 & 12.5 & 15 & 17.5 & 20 & 25 & 30 & 45 & 60 & sec. \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{11 0...F}} & \multicolumn{16}{|l|}{Hold-open time of activator in mode of op. AUTO2} & \\
\hline & & 0 & 1 & 2* & 3 & 4 & 5 & 6 & 7 & 8 & 9 & A & b & C & d & E & F & code \\
\hline & & 0 & 0.5 & 1 & 2 & 3 & 5 & 7.5 & 10 & 12.5 & 15 & 17.5 & 20 & 25 & 30 & 45 & 60 & sec. \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{12 0...F}} & \multicolumn{16}{|l|}{Hold-open time of key switch} & \\
\hline & & 0 & 1 & 2 & 3 & 4* & 5 & 6 & 7 & 8 & 9 & A & b & C & d & E & F & code \\
\hline & & 0 & 0.5 & 1 & 2 & 3 & 5 & 7.5 & 10 & 12.5 & 15 & 17.5 & 20 & 25 & 30 & 45 & 60 & sec. \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{13 0...9}} & \multicolumn{16}{|l|}{Delay time Mode of op. OFF} & \\
\hline & & 0 & 1 & 2* & 3 & 4 & 5 & 6 & 7 & 8 & 9 & & & & & & & code \\
\hline & & 1 & 3 & 5 & 7.5 & 10 & 15 & 20 & 30 & 45 & 60 & & & & & & & sec. \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{14 0...9}} & \multicolumn{16}{|l|}{Bell active time} & 0 = Duration identical to trigger duration \\
\hline & & 0 & 1 & 2* & 3 & 4 & 5 & 6 & 7 & 8 & 9 & & & & & & & code \\
\hline & & =imp & 0.5 & 1 & 2 & 3 & 4 & 5 & 6 & 8 & 10 & & & & & & & sec. \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\(150 \ldots 9\)}} & \multicolumn{16}{|l|}{Bell intermission} & \\
\hline & & 0 & 1 & 2 & 3 & 4 & 5 & 6* & 7 & 8 & 9 & & & & & & & code \\
\hline & & 0 & 0.5 & 1 & 2 & 3 & 4 & 5 & 6 & 8 & 10 & & & & & & & sec. \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\(160 \ldots 9\)}} & \multicolumn{16}{|l|}{Stop time after safety} & \\
\hline & & 0 & 1 & 2* & 3 & 4 & 5 & 6 & 7 & 8 & 9 & & & & & & & code \\
\hline & & 0 & 0.5 & 1 & 2 & 3 & 4 & 5 & 6 & 8 & 10 & & & & & & & sec. \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{17 0...9}} & \multicolumn{16}{|l|}{Runtime Battery in mode of op. 2-6} & Door opens after switch-off battery \\
\hline & & 0 & 1 & 2 & 3* & 4 & 5 & 6 & 7 & 8 & 9 & & & & & & & code \\
\hline & & 10s & 1 & 5 & 10 & 30 & 60 & 120 & 240 & 360 & 480 & & & & & & & \(\mathrm{sec} / \mathrm{min}\). \\
\hline
\end{tabular}

\footnotetext{
* = Default value when factory reset
}

\section*{PROGRAMMING TABLE}

\section*{(I) Most common parameters used are highlighted. * Indicates Default Value}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Co & & \multicolumn{15}{|l|}{Function} & Note \\
\hline 18 & 0...9 & \multicolumn{15}{|l|}{Runtime Battery in mode of op. OFF} & \\
\hline & & 0* & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & & & & & & code \\
\hline & & 10s & 1 & 5 & 10 & 30 & 60 & 120 & 240 & 360 & 480 & & & & & & \(\mathrm{sec} / \mathrm{min}\). \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{19 0...9}} & \multicolumn{15}{|l|}{Airlock timeout} & 0 = No timeout for airlock function \\
\hline & & \multicolumn{15}{|l|}{} & code \\
\hline & & \multicolumn{15}{|l|}{\multirow[t]{2}{*}{Opening speed}} & sec. \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{20 1...9}} & & & & & & & & & & & & & & & & Opening speed \\
\hline & & 0 & 1 & 2 & 3 & 4 & 5 & 6 * & 7 & 8 & 9 & & & & & & Code \\
\hline & & \multicolumn{15}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
\begin{tabular}{l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 3.93 & 7.87 & 11.8 & 15.75 & 19.69 & 23.62 & 27.56 & 31.5 & 35.43 & 39.37 \\
\hline
\end{tabular} \\
Closing speed
\end{tabular}}} & inches / s \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\(210 \ldots 9\)}} & & & & & & & & & & & & & & & & \\
\hline & & 0 & 1 & 2 & 3 & 4* & 5 & 6 & 7 & 8 & 9 & & & & & & Code \\
\hline & & \multicolumn{15}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{ll|l|l|l|l|l|l|l|l|ll}
3.15 & 6.3 & 9.45 & 12.6 & 15.75 & 18.9 & 22.05 & 25.2 & 28.35 & 31.5 \\
\multicolumn{8}{l}{ Close check speed }
\end{tabular}}} & inches / s \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\(220 \ldots 9\)}} & & & & & & & & & & & & & & & & \\
\hline & & 0 & 1 & 2 & 3* & 4 & 5 & 6 & 7 & 8 & 9 & & & & & & Code \\
\hline & & . 59 & . 63 & . 71 & . 82 & 1 & 1.18 & 1.43 & 1.68 & 2.00 & 2.36 & & & & & & inches / s \\
\hline 26 & 0...9 2* & \multicolumn{15}{|l|}{Braking distance opening} & 9 = max \\
\hline 28 & 0...9 4* & \multicolumn{15}{|l|}{Braking distance closing} & 9 = max \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\(300 . . .9\)}} & \multicolumn{15}{|l|}{Motor force opening} & Net force on door edge \\
\hline & & 0 & 1 & 2 & 3 & 4 & 5* & 6 & 7 & 8 & 9 & & & & & & code \\
\hline & & 5 & 11 & 22 & 33 & 44 & 55 & 66 & 77 & 88 & 100 & & & & & & \% \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\(310 \ldots 9\)}} & \multicolumn{15}{|l|}{Motor force closing} & Net force on door edge \\
\hline & & 0 & 1 & 2 & 3 & 4 & 5* & 6 & 7 & 8 & 9 & & & & & & code \\
\hline & & 5 & 11 & 22 & 33 & 44 & 55 & 66 & 77 & 88 & 100 & & & & & & \% \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{33 0...9}} & \multicolumn{15}{|l|}{Motor force closed position} & Net force on door edge > reduce if H73 after 10s! \\
\hline & & 0 & 1 & 2 & 3 & 4* & 5 & 6 & 7 & 8 & 9 & & & & & & code \\
\hline & & 0 & 20 & 30 & 40 & 50 & 60 & 70 & 80 & 90 & 100 & & & & & & N \\
\hline 35 & \(0 . . .95^{*}\) & \multicolumn{15}{|l|}{Reversing sensitivity opening} & \(9=\) max \\
\hline 36 & \(0 . .95{ }^{*}\) & \multicolumn{15}{|l|}{Reversing sensitivity closing} & 9 = max \\
\hline 39 & \(0 . .95^{*}\) & \multicolumn{15}{|l|}{Travel distance tolerances (60...300\%)} & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\(410 \ldots 9\)}} & \multicolumn{15}{|l|}{Opening width reduced} & \\
\hline & & 0 & 1 & 2 & 3 & 4 & 5 & 6* & 7 & 8 & 9 & & & & & & code \\
\hline & & 10 & 20 & 30 & 40 & 50 & 60 & 70 & 80 & 90 & 100 & & & & & & \% \\
\hline 51 & 0 * & \multicolumn{15}{|l|}{Operating mode return to last setting on user interface} & after terminal operating mode \\
\hline 51 & 1... 6 & \multicolumn{15}{|l|}{Operating mode return to mode of op. ...} & after terminal operating mode \\
\hline & & 1 & 2 & 3 & 4 & 5 & 6 & & & & & & & & & & code \\
\hline & & OFF & AUT1 & AUT2 & EXIT & OPEN & MAN. & & & & & & & & & & Mode of Operation \\
\hline 51 & 7 & \multicolumn{15}{|l|}{No operating mode return} & after terminal operating mode \\
\hline 55 & 0 * & \multicolumn{15}{|l|}{Locks in operating mode OFF} & \\
\hline 55 & 1 & \multicolumn{15}{|l|}{Locks in operating mode OFF, EXIT} & \\
\hline 55 & 2 & \multicolumn{15}{|l|}{Locks in operating mode OFF, AUTO 1+2, EXIT} & \\
\hline 56 & 0 * & \multicolumn{15}{|l|}{Unlocks never in case of power failure} & \\
\hline 56 & 1 & \multicolumn{15}{|l|}{Unlocks in AUTO1, AUTO2, EXIT in case of power failure} & \\
\hline 56 & 2 & \multicolumn{15}{|l|}{Unlocks in every operating mode in case of power failure} & \\
\hline 57 & 0 & \multicolumn{15}{|l|}{Electric strike: current-free locked} & \\
\hline 57 & 1 & \multicolumn{15}{|l|}{Electric strike: current-free unlocked} & Only for electric strike with \(100 \%\) duty ratio \\
\hline 57 & 2* & \multicolumn{15}{|l|}{Lock type "Lock unit 2301/2401", with autom. configuration} & \\
\hline 57 & 3 & \multicolumn{15}{|l|}{Electric strike switch-on range 100\%, until door is closed} & Only for electric strike with \(100 \%\) duty ratio \\
\hline
\end{tabular}
* = Default value when factory reset
(I) Most common parameters used are highlighted. * Indicates Default Value

* = Default value when factory reset

\section*{PROGRAMMING TABLE}

\section*{(I) Most common parameters used are highlighted. * Indicates Default Value}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Code} & Function & Note \\
\hline 70 & 2 & I/O Module 1: in1: Operating mode AUTOMATIC 1 & Contact NO. NC detect with code 039 \\
\hline 70 & 3 & I/O Module 1: in1: Operating mode AUTOMATIC 2 & Contact NO. NC detect with code 039 \\
\hline 70 & 4 & I/O Module 1: in1: Operating mode EXIT & Contact NO. NC detect with code 039 \\
\hline 70 & 5 & I/O Module 1: in1: Operating mode OPEN & Contact NO. NC detect with code 039 \\
\hline 70 & 6 & I/O Module 1: in1: Operating mode MANUAL & Contact NO. NC detect with code 039 \\
\hline 70 & 7 & I/O Module 1: in1: Inhibit switch & Contact NO. NC detect with code 039 \\
\hline 71 & 0...7 0* & I/O Module 1: in2: Same choice of functions as on I/O Module 1: in1 & Contact NO. NC detect with code 039 \\
\hline 72 & \(0 . .7\) 0* & I/O Module 1: in3: Same choice of functions as on I/O Module 1: in1 & Contact NO. NC detect with code 039 \\
\hline 73 & \(0 . .7{ }^{0 *}\) & I/O Module 1: in4: Same choice of functions as on I/O Module 1: in1 & Contact NO. NC detect with code 039 \\
\hline 74 & 0 * & I/O Module 1: out1: No function & \\
\hline 74 & 1 & I/O Module 1: out1: Operating mode OFF & \\
\hline 74 & 2 & I/O Module 1: out1: Operating mode AUTOMATIC 1 & \\
\hline 74 & 3 & I/O Module 1: out1: Operating mode AUTOMATIC 2 & \\
\hline 74 & 4 & I/O Module 1: out1: Operating mode EXIT & \\
\hline 74 & 5 & I/O Module 1: out1: Operating mode OPEN & \\
\hline 74 & 6 & I/O Module 1: out1: Operating mode MANUAL & \\
\hline 74 & 7 & I/O Module 1: out1: "Door is opening" & \\
\hline 74 & 8 & I/O Module 1: out1: "Door is opening or open" & \\
\hline 74 & 9 & I/O Module 1: out1: "Door is closing" & \\
\hline 75 & 0... \({ }^{\text {0* }}\) & I/O Module 1: out2: Same choice of functions as on I/O Module 1: out1 & \\
\hline 76 & 0...9 0* & I/O Module 1: out3: Same choice of functions as on I/O Module 1: out1 & \\
\hline 77 & 0... \({ }^{\text {0* }}\) & I/O Module 1: out4: Same choice of functions as on I/O Module 1: out1 & \\
\hline 78 & 0 & User Interface 1: in1: No function & \\
\hline 78 & 1 * & User Interface 1: in1: User interface lock & Contact NO. Use User Interface from V1.07! \\
\hline 78 & 2 & User Interface 1: in1: Operating mode OFF & Contact NO. Use User Interface from V1.07! \\
\hline 78 & 3 & User Interface 1: in1: Operating mode AUTOMATIC 2 & Contact NO. Use User Interface from V1.07! \\
\hline 78 & 4 & User Interface 1: in1: Operating mode EXIT & Contact NO. Use User Interface from V1.07! \\
\hline 78 & 5 & User Interface 1: in1: Operating mode OPEN & Contact NO. Use User Interface from V1.07! \\
\hline 78 & 6 & User Interface 1: in1: Operating mode MANUAL & Contact NO. Use User Interface from V1.07! \\
\hline 78 & 7 & User Interface 1: in1: Emergency closing & Contact NO. Use User Interface from V1.07! \\
\hline 78 & 8 & User Interface 1: in1: Emergency opening in all op. modes & Contact NO. Use User Interface from V1.07! \\
\hline 78 & 9 & User Interface 1: in1: Key switch & Contact NO. Use User Interface from V1.07! \\
\hline 79 & 0...9 0* & User Interface 1: in2: Same choice as on User Interface 1: in1 & Contact NO. Use User Interface from V1.07! \\
\hline 80 & 0 * & Bell trigger: Safety closing 1 & \\
\hline 80 & 1 & Bell trigger: Safety closing 2 & \\
\hline 80 & 2 & Bell trigger: Activator inside & \\
\hline 80 & 3 & Bell trigger: Activator outside & \\
\hline 80 & 4 & Bell trigger: Key switch & \\
\hline 82 & 0 * & No step-by-step control & \\
\hline 82 & 1 & Step-by-step control only for key switch & \\
\hline 82 & 2 & Step-by-step control only for activator inside and outside & \\
\hline 82 & 3 & Step-by-step control for activator inside, outside and key switch & \\
\hline 84 & 0 * & No emergency opening with MCU32-MBTU & \\
\hline 84 & 1 & Emergency opening with MBTU, Type A, with direct opening & Application see T-1705 \\
\hline 84 & 2 & Emergency opening with MBTU, Type B, with cycle operation and opening & Application see T-1705 \\
\hline 85 & 0 * & No airlock function & \\
\hline 85 & 1 & Airlock function for inner door & Application see T-1304 \\
\hline 85 & 2 & Airlock function for outer door & Application see T-1304 \\
\hline
\end{tabular}
* = Default value when factory reset

\section*{TROUBLE SHOOTING CODES}
* E = Error | H = Hint
\begin{tabular}{|c|c|c|c|}
\hline * No. & Fault & Behaviour of System & Reset \\
\hline E00 & Firmware incompatible to MCU version /D & Safety operating mode or only display & Reset, new version MCU32-BASE \\
\hline E0x & Internal test negative & Safety operating mode or only display & Reset \\
\hline E11 & MCU Lock 1, wrong position & Door cannot open & Automatically if OK \\
\hline E20 & LIN to Monit. battery mod. MBAT interrupted & & Reset \\
\hline E21 & LIN to User Interface 1 USIN interrupted & Last mode of operation remains & Automatically if OK \\
\hline E22 & LIN to User Interface 2 USIN interrupted & Last mode of operation remains & Automatically if OK \\
\hline E23 & LIN to s I/O-Modul 1 INOU interrupted & Programmed function will be inactive & Automatically if OK \\
\hline E24 & LIN to s I/O-Modul 2 INOU interrupted & Programmed function will be inactive & Automatically if OK \\
\hline E25 & LIN to Lock Unit 1 LOCU interrupted & Last status remains & Automatically if OK \\
\hline E26 & LIN to Lock Unit 2 LOCU interrupted & Last status remains & Automatically if OK \\
\hline E29 & LIN to Power Supply PSUP-40-36 interrupted & Last status remains & Automatically if OK \\
\hline E30 & Safety clos. creep \(2>1 \mathrm{~min}\). active,test neg. & According safety function & Automatically if OK \\
\hline E31 & Safety open \(1>1 \mathrm{~min}\). active, test neg. & According safety function & Automatically if OK \\
\hline E32 & Safety op. creep \(1>1 \mathrm{~min}\). active, test neg. & According safety function & Automatically if OK \\
\hline E33 & Safety closing \(1>1 \mathrm{~min}\). active, test neg. & According safety function & Automatically if OK \\
\hline E34 & Safety clos. creep \(1>1 \mathrm{~min}\). active,test neg. & According safety function & Automatically if OK \\
\hline E35 & Safety swing area \(>1\) min. active, test neg. & According safety function & Automatically if OK \\
\hline E36 & Safety stop \(>1 \mathrm{~min}\). active, test neg. & According safety function & Automatically if OK \\
\hline E37 & Safety open \(2>1 \mathrm{~min}\). active, test neg. & According safety function & Automatically if OK \\
\hline E38 & Safety op. creep \(2>1 \mathrm{~min}\). active, test neg. & According safety function & Automatically if OK \\
\hline E39 & Safety closing \(2>1 \mathrm{~min}\). active, test neg. & According safety function & Automatically if OK \\
\hline E40 & User-defined input > 1min. active & (Door remains open) & Automatically if OK \\
\hline E41 & Activator inside \(>1 \mathrm{~min}\). active & Door remains open & Automatically if OK \\
\hline E42 & Activator outside > 1min. active & Door remains open & Automatically if OK \\
\hline E43 & Key switch > 1min. active & Door remains open & Automatically if OK \\
\hline E46 & Emergency open >10min. active & Door remains open & Automatically if OK \\
\hline E47 & Emergency close >10min. active & Door closes and remains closed & Automatically if OK. \\
\hline E48 & Wake up or Push button SW2 > 1min. active & Door remains open & Automatically if OK. \\
\hline E49 & Inhibit switch> 1 min . active & Door stand still & Automatically if OK. \\
\hline E51 & Encoder not working & Safety operating mode & Automatic Reset / Reset \\
\hline E53 & Calibration run different from reference & Safety operating mode & Reset \\
\hline E54 & Driveway in op. longer than reference & Safety operating mode & Reset >automatic configuration \\
\hline E55 & Position drift >9mm, toth belt jumping & Only display, auto-correction stops & Automatically if OK / Reset \\
\hline E56 & Door blocked & Saftey operation mode & Reset \\
\hline E61 & Voltage 40V outside of admissible range & Safety operating mode & Automatically if OK \\
\hline E62 & Power Supply 24V (Limit U, I) & Safety op. mode & Automatically if OK \\
\hline E63 & Current in power supply 40V to high & Safety operating mode & Automatically if OK \\
\hline E64 & Motor temperature \(>90^{\circ} \mathrm{C}\), cable interrupted & Safety operating mode & Automatically after cooling down \\
\hline E65 & Control end stage \(>100^{\circ} \mathrm{C}\) & Safety operating mode & Automatically after cooling down \\
\hline E66 & Motor control faulty in MCU32-BASE & Safety operating mode & Reset \\
\hline E67 & Motor current to high in long-term & Normal operation & Automatically if OK \\
\hline E72 & Battery Unit MBTU: Charge < 15\% & Normal operation & Automatically if OK \\
\hline E73 & Battery Unit MBTU faulty (MBAT or accu) & Normal operation & Reset or disconnect power supply \\
\hline E8x & Memory or processor test negative & Safety operating mode & Reset \\
\hline H11 & Operator type not defined & Safety operating mode & Program operator type \\
\hline H14 & Automatic configuration not executed & Safety operating mode & Program 021 or 022 \\
\hline H61 & Calibration run in opening direction & Searches open position & At the end of movement \\
\hline H62 & Calibration run in closing direction & Searches closed position & At the end of movement \\
\hline H63 & Reference run opening & Measures reference run length & At the end of movement \\
\hline H64 & Reference run closing & Searches closed position & At the end of movement \\
\hline H65 & Learn mode (Weight detection) & Normal operation & After 3-12 opening cycles \\
\hline H71 & Battery mode & Door moves slowly & Power supply return \\
\hline H73 & Motor current in closed position to high & Normal operation & Reset, reduce 33x \\
\hline H91 & Obstacle detection at opening & Door reverses & Automatically, Display 20s. \\
\hline H92 & Obstacle detected at closing & Door reverses & Automatically, Display 20s. \\
\hline H93 & Permanent obstacle at opening & Reset after 5 reversings & Automatically, Display 20s. \\
\hline H94 & Permanent obstacle at closing & Reset after 5 reversings & Automatically, Display 20s \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|}
\hline & \multirow{2}{c|}{\begin{tabular}{c} 
Control \\
Input
\end{tabular}} & \begin{tabular}{c} 
Control \\
Terminals
\end{tabular} & Code \\
Function & Input 1 & C1, C2 & 603 \\
\hline Inside Activation & Input 2 & C4, C5 & 614 \\
\hline Outside Activation & Input 3 & D1, D2 & 625 \\
\hline Key Switch** & Input 4 & D4, D5 & 631 \\
\hline Breakout Mode (P) & sf1 & A1, A2 & 642 \\
\hline Safety Closing w/ Reversing 1 & sfl \\
\hline Safety Closing w/Reversing 1 & sf2 & A5, A6 & 652 \\
\hline Safety Closing w/ Reversing 2 & sf3 & B1, B2 & 66 C \\
\hline Safety Closing w/ Reversing 2 & sf4 & B5, B6 & 67 C \\
\hline Aux. Lock Output*** & PWM & E1, E2 & - \\
\hline Bell & Out 1 & E3, E4 & 684 \\
\hline Door Closed & Out 2 & E5, E6 & 690 \\
\hline
\end{tabular}

(1)
* Functions as a reactivation input when door is One-Way / Exit Mode of operation.
\({ }^{* *}\) Activate the door in all modes of operation except in P/ Parked/ Manual/ Breakout.
*** Used as Lock output for swing door applications.

Power Output to Sensors is . 75 A max (For 2301 Standard Door Drive).
Power Output to Sensors is 1.5 A max (For 2401 Heavy Duty Door Drive)

\section*{CONNECTION DIAGRAM - SENSORS}

BEA IXIO -DT1 sensors with Doorway Holding Beams

\(\square\)
Configure the IXIO sensor as as indicated below:
1. AIR: OUTPUT = NC
2. \(\mathrm{TEST}=\mathrm{ON}\)

\(\triangle\)
Adjusted sensors to comply with current ANSI A156.10 standard. Refer to BEA IXIO User Guide to set up and adjust sensor.
i-OneXT sensors with Doorway Holding Beams


D
Configure the i-OneXT sensor as indicated below:
1. Simultaneous Output dipswitch \(14 \downarrow=\) OFF
2. Safety Output dipswitch \(15 \uparrow=\) NC
2. Test Input dipswitch \(16 \uparrow=\) Low


Adjusted sensors to comply with current ANSI A156.10 standard. Refer to Optex i-One XT User Guide to set up and adjust sensor.

\section*{CONNECTION DIAGRAM - SENSORS}

Delta III/ 7501 sensors with Doorway Holding Beams

(1) Confirm the Delta III/ 7501 sensor default values, as the sensor is configured for:
1. Presence Timer dipswitch \(\mathbf{X 1} \downarrow \mathbf{X} 2 \mathbf{\uparrow}=30\) seconds
2. Safety Relay Output dipswitch \(\mathbf{X 7} \downarrow=\) NC
3. Door Learn dipswitch \(\mathrm{Y} 5 \mathbf{1}=\mathrm{OFF}\)
4. Test Input dipswitch \(\mathrm{Y} 6 \downarrow=\mathrm{ON}\)


Adjusted sensors to comply with current ANSI A156.10 standard. Refer to Tormax T1781 tus User Guide to set up and adjust sensor.

OPTIONAL BREAKOUT CIRCUIT - ACCESSORY SWITCHES
Optional TX9200, Standard TX9500 Breakout Function - Optex OS-12C T photo beam surface mounted.

Notes:
Input - in 4 programmed 631 code, NC contact enter 038 OS-12C T - Programmed for mode "D"


Auto - (P) Manual/ Park


Auto - (P) Manual/ Park - Hold Open


These instructions are for informational purposes, refer to the current version of ANSI/ BHMA A156.10 "American National for Power Operated Pedestrian Doors" standard.

Sliding door systems must be installed, adjusted and inspected for compliance with ANSI/ BHMA.

\section*{Important aspects of the installation:}

\section*{Control mat}
- Size of active area and sensitivity.
- Mat Layout/ placement.
- Joining of control mats, trim height.

\section*{Sensors}
- Pattern size and sensitivity.
- Layout/ placement and location.
- Functionality (Activation, Safety).

\section*{Knowing Act}

Doors activated by a manual switch must have the switch installed in a location from which the operation of the door can be observed by the person operating the switch. Refer to the latest revision of ANSI/ BHMA A156.10 for specific details for sensor function, time delay and location of Knowing Act switch.

\section*{Entrapment}
- Closing Speed is one foot per second maximum.
- Break away device(emergency egress) no more than 50 lbf (222 N).
- Closing force no more than \(30 \mathrm{lbf}(133 \mathrm{~N})\).
- Time delay 1.5 seconds minimum.

Signage
Refer to ANSI/ BHMA for requirements and location.

\section*{ANSI/ BHMA A156.10 - SENSOR WALK TEST}

4
The walk test should be performed by an AAADM certified inspector to ensure compliance with the ANSI A156.10 standard. Do not leave a door in non-compliance, contact TORMAX or the sensor manufacturer for assistance.
(1) The illustrations show sensor patterns on one side of the door for simplicity, patterns exist on both sides of the door. Drawings not to scale.
1) Perform walk test on each side of the door checking sensor pattern size, sensitivity and function of all sensors to ensure conformance with ANSI/ BHMA standard.

\(\square\) Passed \(\triangle\) Failed \(\triangle\) Initially failed, then passed after adjustment

\section*{FINAL CHECKLIST}

```

Do the doors slide freely, no binding/dragging?
Are all wires clear from moving parts?
Are all adjustment bolts tight including anti-risers?
Do the break out panels function properly with no obstructions?
Is the breakout switch functioning? (TX9300 \& TX9430)
Are there any fault codes flashing on the FCP?
Are all modes on the FCP operating correctly (Off, Auto, Red, Open, Exit, Hold)?

```

```

Are the holding beams operating correctly (if equipped)?
Is the lock (electrical or mechanical) functioning properly?
Has an ANSI A156.10 inspection been completed?
Are the Door\# decal, Service decal, Daily Safety Check decal all present and in proper location?

```

```

Has the Daily Safety Check been reviewed with the Manager?
Have all the FCP functions been reviewed with the Manager?
Was the Owners Manual given to the Manager?
Did the Manager sign the work order/service ticket?
Installer signature/date

``` \(\qquad\)

\section*{TECHNICAL SPECIFICATIONS}
\begin{tabular}{|c|c|c|}
\hline T-1258 e & Technical Data &  \\
\hline Area of application & iMotion 23012401 Slide Door Drive & \multirow[t]{2}{*}{12859 Wetmore Road
San Antonio, TX 78247
\(1-888-685-3707\)
WWW.TORMAXUSA.COM} \\
\hline Release & November 2009 & \\
\hline Use & Technical Specification & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Door Operator Type & iMotion 2301 \& 2401 Slide Door Drive \\
\hline Drive System & Electromechanical slide door operator with direct drive through AC permanent magnet synchronous motor with external rotor \\
\hline Control System & iMotion MCU32 \\
\hline Mains Connection & \(1 \times 230 / 1 \times 115 \mathrm{VAC}, 50-60 \mathrm{~Hz}, 10 \mathrm{~A}\) \\
\hline Power Consuption & Max. 190 W ( For 2301 Slide Door Drive) Max. 310 W ( For 2401 Slide Door Drive) \\
\hline Sensor Power Supply & 24 V DC (+0.5-1.5V) 0.75 A ( For 2301 Slide Door Drive) 24 V DC (+0.5-1.5V) 1.5 A (For 2401 Slide Door Drive) in battery operation min. 16.5 V \\
\hline Protective Class of Drive & IP 22 \\
\hline Ambient Temperature & \(-4^{\circ} \mathrm{F}\) to \(+122{ }^{\circ} \mathrm{F}\) \\
\hline Outputs & 24 V DC short circuit proof (within power supply 0.75 A in total) For 2301 Slide Door Drive 24 V DC short circuit proof (within power supply 1.5 A in total) For 2401 Slide Door Drive \\
\hline CE Approval & CE inkl. RoHS, TÜV, ETL \\
\hline Standards & DIN 18650, EN 60335-1, EN 61000-6-2, EN 61000-6-3, UL 325 \\
\hline & Note : iMotion 2401 is a category A drive. It may cause radio interferences in living areas. In this case the user can ask for suitable measures \\
\hline Durability & \begin{tabular}{l}
Class 3 according to DIN 18650-1 Dec. 2005 \\
\(1,000,000\) test cycles with 4,000 cycles per day
\end{tabular} \\
\hline
\end{tabular}

\section*{For 2301 \& 2401 Slide Door Drives}
\begin{tabular}{|c|c|c|c|}
\hline & \begin{tabular}{c} 
PACKAGE WIDTH \\
(foot)
\end{tabular} & \begin{tabular}{c} 
MAXIMUM DOOR \\
WEIGHT (LBS) \\
2301
\end{tabular} & \begin{tabular}{c} 
MAXIMUM DOOR \\
WEIGHT (LBS) \\
2401
\end{tabular} \\
\hline SINGLE SLIDE & \(7^{\prime}-9^{\prime}\) & 265 lbs & 530 lbs \\
\hline BI - PART & \(10^{\prime}-14^{\prime}\) & 220 lbs & 440 lbs \\
\hline \begin{tabular}{c} 
TELESCOPIC SINGLE \\
SLIDE
\end{tabular} & \(7^{\prime}-9\) & 176 lbs & 265 lbs \\
\hline \begin{tabular}{c} 
TELESCOPIC \\
BI - PART
\end{tabular} & \(10^{\prime}-14^{\prime}\) & 132 lbs & 220 lbs \\
\hline
\end{tabular}

For larger package width Contact Tormax
\begin{tabular}{ll} 
Opening speed & \(3.9 \mathrm{in} / \mathrm{s}-39.4 \mathrm{in} / \mathrm{s}\) \\
Closing speed & \(3.9 \mathrm{in} / \mathrm{s}-39.4 \mathrm{in} / \mathrm{s}\) \\
Force at the tooth belt & \begin{tabular}{l}
\(18.4-250\) Foot Pounds (For 2301 Slide Door Drive) \\
\\
\end{tabular} \(29.5-295\) Foot pounds (For 2401 Slide Door Drive)
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline T-1277 e & Cable Plan & \multirow[t]{3}{*}{\begin{tabular}{l}
\(\star \star \star \star \star\) \\
TORMAX \\
AUTOMATIC \\
12859 Wetmore Road San Antonio,Tx 78247 1-888-685-3707 www.tormaxusa.com
\end{tabular}} \\
\hline Area of application & iMotion 2301 \& 2401 Slide Door Drive & \\
\hline Release & Jan. 2009 & \\
\hline Use & Wiring Specifications & \\
\hline
\end{tabular}

\begin{tabular}{|c|l|l|l|l|l|}
\hline No. & Control Cables & Notes & Cable & \begin{tabular}{l} 
Length (ft) \\
without screen
\end{tabular} & \begin{tabular}{l} 
Length (ft) \\
with screen
\end{tabular} \\
\hline 1 & \begin{tabular}{l} 
Activator/Push-button \\
inside
\end{tabular} & Stranded wire recommended & \(4 \times 20\) AWG & \(<95\) & \(<328\) \\
\hline 2 & \begin{tabular}{l} 
Activator/Push-button \\
outside
\end{tabular} & Stranded wire recommended & \(4 \times 20\) AWG & \(<95\) & \(<328\) \\
\hline 3 & Key-switch & Stranded wire recommended & \(2 \times 20\) AWG & \(<95\) & \(<328\) \\
\hline 4 & \begin{tabular}{l} 
User interface iMotion \\
connected with FCC- \\
connector
\end{tabular} & & \begin{tabular}{l} 
Phone ribbon cable \\
\(6 \times 26\) AWG \\
RJ12, 6P6C
\end{tabular} & \(<95\) & \\
\cline { 2 - 6 } & \begin{tabular}{l} 
User interface iMotion \\
connected with \\
LIN-Adapter
\end{tabular} & & \(3 \times 23\) AWG & \(<95\) & \(<328\) \\
\hline 5 & Input & Stranded wire recommended & \(\ldots \times 20\) AWG & \(<95\) & \(<328\) \\
\hline 6 & \(\ldots\) & \(\ldots \times 20\) AWG & \(<95\) & \(<328\) \\
\hline 7 & \(\ldots\) & Stranded wire recommended & \(2 \times 20\) AWG & \(<95\) & \(<328\) \\
\hline 8 & Message \(1 \ldots\) & Stranded wire recommended & \(2 \times 20\) AWG & \(<95\) & \(<328\) \\
\hline 9 & Message \(2 \ldots\) & Stranded wire recommended & \(3 \times 20\) AWG & & \(<95\) \\
\hline 10 & Mains main switch & Stranded wire recommended & & \\
\hline 11 & Mains socket & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline T-1259 e & Module Documentation Control Unit MCU32-CONU-85-18-A &  \\
\hline Area of application & iMotion 2301 and 2401 Slide Door Drives & 1859 Wetmore Road \\
\hline Release & November 2009 &  \\
\hline Use & \multicolumn{2}{|l|}{Installation and Maintainence} \\
\hline
\end{tabular}

\section*{Purpose}

To manage the functions of control system for iMotion 2301 standard and 2401 Heavy duty door door drives

\section*{Function}

The control unit contains all the necessary control system components for the operation of a sliding door system. It provides the connections and the power supply for the control panel, lock unit, motor unit, battery unit and input / output module. The system configuration is performed through either the control panel MCU32-USIN or through the Skipper software.


1 Power supply MCU32-FLTR-B
2 Voltage selector 230 / 115 VAC
3 Transformer MCU32-TRAF-29-85-A
4 Power supply module MCU32-PSUP-40-18-C
5 Fuse 8AT

6 Base module MCU32-BASE-40-200-A
7 Display power supply \(24 \mathrm{~V} / 5 \mathrm{~V}\)
8 Terminal module MCU32-TERM-B
9 Push-button for opening impulse
10 Space for installation of 1 input/output module or 1 relay module

\section*{Module Connections}


Connectors and terminals may only be connected in the current-free state.


\section*{Commissioning}

See T-1272.
Component Dimensions
2301 Standard Door Drive


Technical Data

Mains connection:
Power consumption:
Power supply sensors
Ambient temperature:
Module interfaces:

115 / 230 V AC, \(50-60 \mathrm{~Hz}\)
8 ... 190 W
24 V DC / 0.75 A
\(-4^{\circ} \mathrm{F}\) to \(+122^{\circ} \mathrm{F}\)
Motor unit MCU32-MOTU-40-6-A
Battery unit MCU32-BATU-24-1-B
LIN bus for lock unit MCU32-LOCU-40-7-B
LIN bus for input/output module MCU32-INOU-A
LIN bus for operating unit MCU32-USIN-7-A
RS232 for service software iMotion
Config Card MCU32-CONF- ...

115/230 VAC, \(50-60 \mathrm{~Hz}\)
8 - 310 W
24 VDC / 1.5 A
\(-4^{\circ} \mathrm{F}\) to \(+122^{\circ} \mathrm{F}\)
Motor unit MCU32-MOTU-40-10-A
Battery unit MCU32-BATU-24-1-B
LIN Bus for lock unit MCU32-LOCU-40-7-B
LIN Bus for input/output module MCU32-INOU-A
LIN Bus for user interface MCU32-USIN-7-A
RS232 Service Software TCP
Config Card MCU32-CONF-...
\begin{tabular}{|c|c|c|}
\hline T-1274 e & \begin{tabular}{l}
Module Documentation \\
Motor Unit MCU32-MOTU-40-6-A
\end{tabular} & \multirow[t]{3}{*}{\begin{tabular}{l}
\(\star \star \star \star \star\) TORMAX \\
AUTOMATIC 12859 Wetmore Road San Antonio, TX 78247 1-888-685-3707 WWW.TORMAXUSA.COM
\end{tabular}} \\
\hline Area of application & iMotion 2301 \& 2401 Slide Door Drive & \\
\hline Release & March 2008 & \\
\hline Use & Installation and Maintainence & \\
\hline
\end{tabular}

\section*{Purpose}

This motor unit is design for 2301 standard and 2401 Heavy duty door drives.

\section*{Functional Principle}

The motor unit includes MCU32-MOTR-40-6-A (1) ( for standard door drive), MCU32-MOTR-40-10-A (1) ( for heavy duty drive) with encoder module MCU32-ENCO-24-16-A (5) and brake module MCU32-BRAK-40-3-A (3).

The synchronous motor is attached with permanent magnet and external rotor, which drives the toothbelt directly. The encoder module rotates the motor and determines the door position. The brake module limits the door speed on power interruption or when the motor unit is disconnected from the control module.


1 Motor
2 Connector MO
3 Brake module
4 Connector M
5 Encoder module
6 Connector ENC
7 Connector POT

\section*{Installation}
- Connect the motor unit with the base module using the prefabricated motor and encoder cables as shown

\section*{Connection Diagram}


\section*{Commissioning}

Programming using FCP use T-1272e

\section*{Component Dimensions}

\begin{tabular}{|c|c|c|}
\hline T-1265 e & Module Documentation Lock Unit MCU32-LOCU-40-7-B &  \\
\hline Area of application & iMotion 2301, 2401 Slide Door Drive & \multirow[t]{2}{*}{\[
\begin{aligned}
& 12859 \text { Wetmore Road } \\
& \text { San Antonio,Tx } 78247 \\
& 1-888-685-3707 \\
& \text { www.tormaxusa.com }
\end{aligned}
\]} \\
\hline Release & September 2009 & \\
\hline Use & \multicolumn{2}{|l|}{Installation and Maintainence} \\
\hline
\end{tabular}

\section*{Purpose}

This lock unit is design for 2301 and 2401 slide door drives. It positively locks each SX or X panel.

\section*{Functional Principle}

The lock unit includes lock module MCU32-LOCK-40-7-B(1) The lock unit recieves control commands for locking and unlocking via LIN bus (2) from the base module .

The operating function depends on the programming of the basic control system. For individual functions see programming table.
1) Lock module MCU32-LOCK-40-7-B
2) LIN -Bus
3) Code switch


\section*{Connection Diagram}


\section*{Installation}

Mount the lock unit at a suitable position with the 4 screws and groove blocks in the supporting profile.
On single leaf units the counter bolts are attached to the supporting profile.

\section*{LIN Connection}
- Cut to length and assemble the LIN connection cable on both ends with a FCC 6-pole plug .

FCC-plug is polarity sensitive.


First connect the LIN cable and FCP to the slide door drive then switch the 110 vAC on.

\section*{Commissioning}
```

Programming Through FCP See T-1272 e
See programming table for specific lock functions

```

\section*{Component Dimensions}


\section*{Technical Data}
\begin{tabular}{ll} 
Rated voltage of solenoid & 12 V DC \\
Maximum power of solenoid & 40 W \\
Loading of 24 V sensor power supply & 100 mA \\
LIN Interface & FCC \(6-\mathrm{Pol}\) \\
Length of all LIN cables: & \(<98^{\prime}\) (Foot) \\
LIN cable length between modules: & \(<30 \mathrm{~m}\) with phone ribbon cable \(6 \times 0,14 \mathrm{~mm}^{2}\) \\
& \(<100 \mathrm{~m}\) with LIN-Bus-Adapter MCU32-LADP-A \\
Ambient temperature & \(-4^{\circ} \mathrm{F} \ldots+122^{\circ} \mathrm{F}\) \\
Interface & MCU32-TERM \\
& Monitoring for lock 01 \\
& Manual disengagement
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline T-1268 e & Module Documentation Battery Unit MCU32-BATU-24-1-B & \multirow[t]{3}{*}{\begin{tabular}{l}
丸ᄎ \(\star \star \star\) \\
TORMAX \\
AUTOMATIC 12859 Wetmore Road San Antonio,Tx 78247 1-888-685-3707 ww.tormaxusa.com
\end{tabular}} \\
\hline Area of application & iMotion 2301 \& 2401 Slide Door Drive & \\
\hline Release & Feb. 2008 & \\
\hline Use & Installation & \\
\hline
\end{tabular}

\section*{Purpose}

This battery unit is design to be used on iMotion 2301 or 2401 Slide Door Drives. The module is used for limited time operation of the system and/or for accomplishment of a final motion into a determined position.

\section*{Functional Principle}

The battery unit includes the batteries MCU32-ACCU-24-1-A and the battery module MCU32-BATT-24-1-B (1).

The batteries store the energy required to continue system operation on power failure. The battery module contains a charging circuit that charges the batteries in the presence of mains power and/or holds them in the charged state. In order to avoid total discharge, the battery can be switched off with a switch.

The operational function depends on the programming of the basic control system. See programming table for programming options.

The wake-up function allows renewed switching on with subsequent door opening after the battery has been disconnested. The function depends on the current charge of the accumulators and necessitates a connected key switch (4).


\section*{Connection Diagram}


\section*{Installation}
- Mount the battery unit at the suitable position with screws and groove blocks
- Connect the battery unit with the power supply module as shown in the connection diagram

When connecting the batteries make sure that the polarities are not interchanged and the contacts are not short circuited. A sudden discharge may cause an explosion of the batteries. The constituents are highly poisonous.

\section*{Commissioning}

The battery module is detected automatically during auto configuration. See Commissioning of the Entire System T-1272e

\section*{Component Dimensions}


\section*{Technical Data}

Rated voltage
Maximum power
Batteries
Ambient temperature
Interfaces

24 VDC
120 W
\(2 \times 12 \mathrm{~V} / 1.2 \mathrm{Ah}(52 \times 97 \times 43 \mathrm{~mm})\)
\(32^{\circ} \mathrm{F} \ldots+104^{\circ} \mathrm{F}\)
MCU32-PSUP-40-18-C
MCU32-PSUP-40-36-A
\begin{tabular}{|c|c|c|}
\hline T-1269 e & Module Documentation Power Supply Module & \multirow[t]{3}{*}{\begin{tabular}{l}
\(\star \star \star \star \star\) TORMAX \\
AUTOMATIC \\
12859 Wetmore Road San Antonio,Tx 78247 1-888-685-3707 www.tormaxusa.com
\end{tabular}} \\
\hline Area of application & iMotion 2301 \& 2401 Door Drives & \\
\hline Release & April 2008 & \\
\hline Use & Installation and Maintainence & \\
\hline
\end{tabular}

\section*{Purpose}

To provide intermediate circuit voltage and the 24 V sensor voltage from the transformer or the battery unit.


\section*{Installation}

4
The module must be protected against electrostatic discharge (ESD) when touching it.
- Fasten the printed circuit board in the power-free state at the designated points.
- Switch on the power supply only after all surrounding MCU32 modules are connected.

\section*{Module Connections}


\section*{Module Connections}


\section*{Technical Data}
\begin{tabular}{|c|c|c|}
\hline & 2301 & 2401 \\
\hline \begin{tabular}{l}
Rated voltage (input, from transformer) \\
Nominal power (input, from transformer) \\
Rated Voltage (input,from ext.DC voltage) \\
Nominal Power (input, from ext.DC Voltage) \\
Rated voltage (input, from battery module) Maximum power (input, from battery module) Maximum current 24 V sensor power supply (output) \\
Ambient temperature \\
Dimensions length x width x height (mm) Interfaces
\end{tabular} & \begin{tabular}{l}
\[
\begin{aligned}
& 25 \mathrm{~V} \mathrm{AC} \\
& 85 \mathrm{VA}
\end{aligned}
\] \\
24 V DC .... 42 V DC \\
120W \\
0.75 A
\[
\begin{aligned}
& -4^{\circ} \mathrm{F} \text { to }+122^{\circ} \mathrm{F} \\
& 3-1 / 8^{\prime \prime} \times 2-3 / 4^{\prime \prime} \times 1-11 / 16^{\prime \prime}
\end{aligned}
\] \\
Transformer MCU32-TRAF-29-85-A \\
Battery module MCU32-BATT-24-1-B \\
Base module MCU32-BASE-40-200-A
\end{tabular} & ```
25 V AC
250 VA
24 V DC .... 42 V DC
5 A
24 V DC
120 W
1.5 A
\(-4^{\circ} \mathrm{F}\) to \(+122^{\circ} \mathrm{F}\)
5-1/8"x2-3/4"x1-11/16"
Transformer MCU32-TRAF-29-250-A
Battery module MCU32-BATT-24-1-B
Base module MCU32-BASE-40-200-A
``` \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline T-1261 e & \begin{tabular}{l}
Module Documentation \\
Base Module MCU32-BASE-40-200-A
\end{tabular} & \multirow[t]{3}{*}{\begin{tabular}{l}
. tORMAX \\
AUTOMATIC 12859 Wetmore Road San Antonio, Tx 78247 1-888-685-3707 www.tormaxusa.com
\end{tabular}} \\
\hline Area of application & iMotion 2301 \& 2401 Slide Door Drive & \\
\hline Release & August 2012 & \\
\hline Use & Installation and maintenance & \\
\hline
\end{tabular}

\section*{Purpose}

Control system component for iMotion 1301, 1401 Swing Door Drive and iMotion 2202, 2301, 2401 Sliding Door Drive.

\section*{Function}

The base module is the central functional control system of the MCU32 module family. The module contains the processor system including a non-volatile (i.e. voltage failure safe) memory for the adjusted values, a 3-phase converter for the motor and the drivers for the interfaces OUT1-2, PWM, as well as LIN and CAN.

The control system can be programmed by means of the software iMotion Skipper or the user interface MCU32-USIN-7-A. For access to the full function range, the configuration card MCU32-CONF is required. The software of the base module "firmware" can be updated by means of a PC or handheld with iMotion Skipper.

The control system is programmed with the FCP.

\section*{Base module MCU32-BASE-40-200-A}

1 Connection for encoder MCU32-ENCO-24-16-A
2 Connection for motor MCU32-MOTR-40-... (*)
3 Connection for power supply module MCU32-PSUP-40-... (*)
4 Connection for potentiometer, closed position indicator
5 Push-button SW1 (for starting a download)

6 Slot for configuration card MCU32-CONF-... (*)
7 Display for power supply 24 V and 5 V
8 Beeper
9 Connection for terminal module MCU32-TERM-... (*)
(*) Different versions

\section*{Installation}

4The module must be protected against electrostatic discharge (ESD) when touching it.

\footnotetext{
- Fasten the printed circuit board at the predetermined points in the power-free condition.
- Switch on the power supply only after all surrounding MCU32 modules are connected.
}

\section*{Module Connections}

\section*{Commissioning}

Program using FCP see T-1248

\section*{Technical Data}
\begin{tabular}{ll}
Processor & 32 bits, 30 MHz \\
System monitoring & Complies with DIN 18650 requirements \\
Ambient temperature & \(-4^{\circ} \mathrm{F} \ldots .+167^{\circ} \mathrm{F}\) \\
Overheating protection & for power supply 40 V \\
Dimensions & \(7.873 \times 3.031\) inch \\
Module interfaces: & MCU32-PSUP \\
& MCU32-MOTU \\
& MCU32-TERM \\
& MCU32-CONF \\
& MCU32-TEBR
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline T-1264 e & \begin{tabular}{l}
Module Documentation \\
Function Control Panel (FCP) MCU32-USIN-7-A
\end{tabular} & \multirow[t]{3}{*}{\begin{tabular}{l}
\(\star \star \star \star \star\) TORMAX \\
AUTOMATIC \\
12859 Wetmore Road San Antonio, TX 78247 1-888-685-3707 www.tormaxusa.com
\end{tabular}} \\
\hline Area of application & iMotion 1301, 1401 Operators and 2301, 2401 Drives & \\
\hline Release & October 2008 & \\
\hline Use & \multicolumn{2}{|l|}{Programming and mode selection} \\
\hline
\end{tabular}

\section*{Purpose}

Operating and programming of the automatic door with TORMAX iMotion universal processor.

\section*{Functional control panel (FCP) MCU32-USIN-7-A}

\section*{Connection Diagram}

\section*{Connection Option 2}

\section*{Connection Option 1}

\section*{Connection Option 3}

- Switch mains 115 V AC ON after the functional control panel(FCP) is connected.

\section*{LIN Connection}
- Cut to length and assemble the LIN connection cable on both ends with a FCC 6-pole plug
. FCC plug is polarity sensitive

- First connect the LIN cable and FCP to the 2301 or 2401 Door Drive then switch the 115 VAC on.

\section*{Technical Data}

Inputs:
Terminal cross section:
Interface
Ambient Temperature:
Dimensions:
LIN cable length:
\(2 \times\) Pull up in: 24 VDC / 3 mA, function programmable \(0.5 \mathrm{~mm}^{2}\) (strand or wire)
LIN, FCC 6-Pol
\(-4^{\circ} \mathrm{F} . .+122^{\circ} \mathrm{F}\)
1.7716 inch \(\times 1.7716\) inch

98' Max
\begin{tabular}{|c|c|c|}
\hline T-1360 e & \begin{tabular}{l}
Module Documentation \\
Input / Output Module MCU32-INOU-A
\end{tabular} & \multirow[t]{3}{*}{\begin{tabular}{l}
\(\star \star \star \star \star\) TORMAX \\
AUTOMATIC 12859 Wetmore Road San Antonio,Tx78247 1-888-685-3707 www.tormaxusa.com
\end{tabular}} \\
\hline Area of application & iMotion 1301, 1401, 2301, 2401 & \\
\hline Release & January 2010 & \\
\hline Use & Input/Output terminal board & \\
\hline
\end{tabular}

\section*{Purpose}

Additional inputs and outputs for automatic door drives with iMotion. Not suitable for time-critical applications such as security or safety functions.

\section*{Function}

The IO module receives its control commands from the base module via the LIN-Bus (1). The two LIN plugs are identical. Each module must have a unique LIN address which can be set with the code switch (2). The function of the inputs and outputs depends on the programming of the basic control system. See the MCU programming table in the Extranet for the functions.

A self-resetting thermal cut-out protects the control system's 24 V power supply against continuous overload. The thermal cut-out resets itself immediately after the overload is removed.

\section*{Connection Diagram}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Inputs} \\
\hline \begin{tabular}{c}
IN1 \\
GND IN \\
\hline
\end{tabular} & \begin{tabular}{|c|c|}
\hline IN 2 \\
GND IN
\end{tabular} & \[
\begin{array}{|c|}
\hline \text { IN } 3 \\
\text { GND } \operatorname{IN} \\
\hline
\end{array}
\] & \[
\begin{array}{|c|}
\hline \text { IN } 4 \\
\text { GND IN } \\
\hline
\end{array}
\] \\
\hline \[
\begin{array}{ll}
1 & 2 \\
\bigcirc & \bigcirc
\end{array}
\] & \[
\begin{array}{ll}
3 & 4 \\
\bigcirc & \bigcirc \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
5 & 6 \\
\bigcirc & \bigcirc
\end{array}
\] & \[
\begin{array}{ll}
7 & 8 \\
\bigcirc & \bigcirc \\
\hline
\end{array}
\] \\
\hline \[
[]
\] & - & & \\
\hline
\end{tabular}

The inputs must not be used for security or safety-related functions (e.g. light beams).

Load on the 24 V system max. 25 mA per output.

The 24 VDC power supply on this module must not be used as the power supply to sensors.

\section*{Installation}

The module is installed on the module carrier.

\section*{LIN Connection}
- Cut to length and assemble the LIN connection cable on both ends with a FCC 6-pole plug (article see TORMAX price list).

The polarity of the FCC-plug is not of importance.

For alternative cable connections via adapter with terminal connection see module documentation LIN-Bus adapter T-1322.

\section*{Commissioning}

The modules must be coded according to the connection diagram.
The modules are detected automatically when initiating the auto configuration.
See programming table in the manual for input and output functions (021). No functions are programmed as standard.

\section*{Technical Data}

Inputs:
Outputs:
Input/output reaction time:

Power supply 24 V :
Terminal cross section:
LIN Interface
Length of all LIN cables:
LIN cable length between modules:
Ambient temperature:
Dimensions:
Module interface:
\(4 \times\) Pull up in: 24 VDC / 5 mA , function programmable
Transistor out: 24 VDC / Continuous current max. 25 mA , function programmable with 1 module MCU-INOU-A < 50 ms with 2 modules MCU-INOU-A < 100 ms
Total continuous load < 100 mA
\(0.14 \ldots 1.5 \mathrm{~mm}^{2}\) (recommended conductor cross section: \(0.5 \mathrm{~mm}^{2}\))
FCC 6-Pol
< 100 m
98' Max
\(-4^{\circ} \mathrm{F} \ldots+122^{\circ} \mathrm{F}\)
2 5/32" - 3 11/16"
MCU32-TERM

\title{
Your First Choice for Automatic Doors
}

\author{
TORMAX Sliding Doors
}

\section*{TORMAX Swing Doors}

Sales, Installation and Service. Automatic and Manual Doors```

