Setup Instructions and Troubleshooting

C3150 Microprocessor Control V15.04

for Electric Slide Door Operators Series 2000, 2000B, 2001 and 2003

Use with G200, G2001, G230, G230T, G205-C or G20B Installation Instructions.

Table of Contents

LINEAR DRIVES
Section Sheet

1. SLIDE OPERATOR QUICK-START
C3150 Control v15.04 for Series 2000 Linear Drives H310.01
and S2000B, S20001 and S2003 Belt Drive Operators.
2. C3150 v15.04 Control Initialization - Linear Drive
Step 1: Power-Up. H310.02
Step 2: Learn Cycle H310.02
Step 3: Checking Door Cycle. H310.05
3. Adjusting Parameters - Linear Drive
Step 1: Changing Parameter Settings H310.07
Step 2: Saving Parameter Settings H310.08
4. Adjustable Preset Parameters - Linear Drive
Step 1: List Standard 'Tech' and 'SuperTech' Parameter Settings H310.08
Step 2: Editing Parameter Settings H310.09
5. Actuation Features - Linear Drive
Refer to Section 14 - 'Step 1: Setting Control Operating Modes' H310.22
6. If Failed Autolock Setup - Linear Drive
Step 1: Autolock Setup and Functions. H310.11
7. Setting Lock Parameters
Refer to Section 16 - 'Step 1: Lock Parameter Verification’ H310.27
8. Lock Error Codes
Refer to Section 17 - 'Step 1: Lock Diagnostics' H310.28
9. Autolock Test Points
Step 1: Monitored Autolocks H310.13
10. Microswitches
Step 1: Microswitch Wiring. H310.14
Step 2: Partial-Open Switch Wiring. H310.14
BELT DRIVES
Section Sheet
11. C3150 v15.04 Initialization - Belt Drive
Step 1: Power-Up H310.15
Step 2: Learn Cycle H310.15
Step 3: Checking Door Cycle H310.17
12. Adjusting Parameters - Belt Drive
Step 1: Changing Parameter Settings H310.19
Step 2: Saving Parameter Settings H310.20
13. Adjustable Preset Parameters - Belt Drive
Step 1: List Standard 'Tech' and 'SuperTech' Parameter Settings H310.20
Step 2: Editing Parameter Settings H310.21
14. Actuation Features - Belt Drive
Step 1: Setting Control Operating Modes H310.22
Step 2: Switch Input Signals to CN4 H310.23
Step 3: Switch Input Signals to CN15 and CN16 H310.24
Step 4: Switch Input Signals to CN7 H310.24
15. If Failed Autolock Setup - Belt Drive
Step 1: Autolock Setup and Functions H310.25
16. Setting Lock Parameters
Step 1: Lock Parameter Verification H310.27

Table of Contents cont:

BELT DRIVES
Section continued Sheet
17. Lock Error Codes
Step 1: Lock Diagnostics H310.28
18. Autolock Test Points
Step 1: Monitored Autolocks H310.29
LINEAR AND BELT DRIVES
Section
19. Diagnostics
Step 1: Entering Diagnostic Menu H310.30
D01: Multifunction Test H310.30
A. Navigating thru Functions H310.30
B. Motor and Encoder Test - Belt Drive Units H310.31
C. Fail-Secure Lock Test - Belt Drive Units H310.31
D. Fail-Safe Lock Test - Belt Drive Units H310.32
E. Motor and Microswitch Test - Linear Drive Units H310.32
F. Fail-Secure Lock Test - Linear Drive Units H310.34
G. Fail-Safe Lock Test - Linear Drive Units H310.35
D02: Show Supply Voltages H310.36
D03: Read Counters H310.36
D04: Read Log H310.37
D05: Clear Cycle Counter H310.37
D06: Clear Log H310.38
D07: Zero Stroke H310.38
D08: Rholix Block H310.39
D09: Show Miscellaneous Information H310.39
20. Appendix
A - Troubleshooting_Power Supply on C3150 Control v15.04. H310.40
B - Status Messages - C3150 Control v15.04 H310.44
C - Shortcuts - C3150 Control v15.04 H310.50
D - Harness Assemblies - C3150 Control v15.04 H310.50
E - Motor Test - C3150 Control v15.04 H310.51
F - OPTEX OS12-CT - Photoelectric Safety Beam and Amplifier System H310.52
G - Masking Parameters in 'SuperTech Menu’ H310.53
H-3 Position Push Button Switch H310.55
I- Electric Latch Assembly - C3150 Control v15.04 H310.56
J - Secondary Activation using AUX-3 and AUX-4 H310.57
K - Illustration 1: Terminal Block I/O and LED Descriptions - C3150 Control v15.04 H310.59
L - C3809 Power Fail Assembly for the C3150 Control v15.04 H310.60
21. Wiring Diagrams
Linear or Belt Drives
Diagram 1: C3809 Power Fail Assembly for the 3150 Control v15.04, 120VAC Config. WD-H310.61
Linear Drives
Diagram 2: C3150 Control v15.04 with Actuating and Switch Connections WD-H310.62
Belt Drives
Diagram 3: C3150 v15.04 Control with Actuating and Switch Connections WD-H310.63
Diagram Notes / Horton Automatics' Contact Information H310.64

1. SLIDE OPERATOR - CONTROL HARNESS DETAIL

$\begin{array}{c}\text { Dipswitch Settings } \\ \text { for Optex Sensors }\end{array}$	$\begin{array}{l}\text { IMPORTANT ! } \\ \text { Itis imperative that these } \\ \text { Dipswitches are in the }\end{array}$

\square C03150.1500 v15.04 Control Assembly with
Attachment Hamesses Detail A156.10.

It is strongly advised by Horton Automatics to terminate a ground from incoming power at the indicated green fastener located on far right side of the Control Chassis (refer to illustration below).

1 If there are any questions about these instructions, contact Horton Automatics Technical Assistance Team
at the phone numbers listed on the back cover.
\square The Horton C3150 Control Assembly is designed for
Instructions to Installer use only on the Horton Series 2000, 2000B, 2001, 2003, and 2003T slide door systems.
\square This Microprocessor Control and Slide Door Unit must be installed by a trained and experienced installer with the knowledge of local codes and ANSI A156.10 'Standards for Power Operated Doors'.
\square To ensure safe and proper operation, the door must be installed and adjusted to conform to Horton Automatics recommendations, all code requirements, and ANSI
\square
\square C3150 Control for Series 2000 Linear Drives and
S2000B, S20001 and S2003 Belt Drive Operators
The C3150 Microprocessor Control is
Horton Automatics' latest advancement in
Slide Door Control Technology. It incorporates
and supports all functions including sensor
monitoring to meet ANSI 156.10 regulations.


```
    M,
```

sent postas arion. int
Interior Sensor to INT Input

| for Optex Sensors |
| :--- | :--- |
| Function iOneXT XZ |

$\begin{array}{c}\text { Refert to Sect. 20, APPENDIX D, on Sht. H310.50 } \\ \text { for 'List of WireLaces Used on the } \\ \text { C03150.1500 Slide Control.' }\end{array}$

Refert to Sect. 20, APENDIXD, on Sht. H310.50 for 'List of Wire Laces USed on the C03150.1500 Slide Control.'

02. C3150 CONTROL INITIALIZATION - LINEAR DRIVE

Step 1: Power-Up

Be sure the toggle circuit is complete before applying AC power to the unit. Caution: The Door will move.

- With power established, Control LED Displays the Door Mode and Type Traffic along with the Elapsed Time since last Reset.

- The Display then shows the Control Version and Date. Time reverts to '0' with each power loss or Reset. Maximum Time range is 180 days.

Version 15.04
(c) Horton 2019

Step 2: Learn Cycle

Instruct the control to perform a full learn cycle by:
\square Holding down the SET button and the RESET button.
\square Release the RESET button.
\square Hold the SET button approximately 5 seconds until 'Setup Request' appears on the screen.

Setup Request

Select Operator Type

- Display shows Default Operator Type:

Current S2000B/S2003
Dunker/Merkle

Select Operator:

 S2000B/S2003 Belt
Select Operator 2000 Linear

\checkmark When the required 2000 Linear Operator is displayed, press the SET button.

Press the UP button to confirm Operator Type.

Press the DOWN button for unmonitored Sensors.
Installation can be simplified by initially pressing DOWN button to eliminate monitoring during basic Set-Up. Turn ON Parameters 61, 62 and 63 while testing sensors.
\square Press the UP button if Sensors are connected and will be monitored.

Step 2: Learn Cycle cont:

\square Press the DOWN button to Disable Day/Nite Switch.
\square Press the UP button to Enable Day/Nite Switch if using a 4 position keyswitch (refer to Wiring Diagrams on Sheet H310.61 and H310.62) or other Nite Modes.

Marker for Section 6 Only.
Return to Section 6, Sht. H310.11.

\sqcup The Learn Cycle begins:

The Control then searches for a Lock Device connected to the Operator. The Display will show one of the following codes depending on the Lock type connected. In case of difficulty with the lock, refer to Section 06 - 'Linear Drive - If Failed Autolock Setup' on Sheet H310.11.

Enable Day/Nite SW? UP=Yes, DOWN=No

Checking for Lock...

Checking for Lock... No Lock Detected

- Fail Secure Lock Recognized.
- Fail Safe Lock Recognized.
\qquad
\square The Control will save the data from the Learn Cycle.

Data Saved

Checking for Lock... Fail Safe Lock
Checking for Lock... Fail Secure Lock

Close Cushion

Day 2-Way

Od: Oh: Om: Os

- Leaming Open Speed current.
- Decelerating from Open Speed.
- Driving to Full-Open Position.
- Leaming for Obstructions complete.
- Executing Time Delay after Full-Open
- Leaming Reversing Peak Current for Close Accelerate.
- Leaming Reversing Sensitivity for Closing Speed.
- Leaming Reversing Sensitivity for Braking Door.
- Leaming Reversing Sensitivity for Close Cushion.

Open Speed + Learn Act (Down)

Braking Door Act (Down)

Open Cushion Act (Down)

Obst Learn Complete

Time Delay 1

Close Accelerate Learning Rev Peak

Close Speed Learning Rev Sens

Braking Door Learning Rev Sens

Close Cushion Learning Rev Sens

- Reversing Sensitivity Leaming Complete

Rev Learn Complete

Leaming Cycle Complete.

- The LED display returns to Initial read-out.

Step 3: Checking Door Cycle

When the toggle switch is on, the DOWN button acts as an actuation device. Caution: The Door will move. Version 15.04 Requires the DOWN button to be held for approximately 1 second to activate door. Be sure the safety beam area is clear of obstructions. Activation devices may not yet be installed.

Start with the door in the closed position.
\square Press the DOWN button to actuate the door to open at factory selected default settings.
\sqcup Inspect the door unit for smooth operation free of binds and noise.

- The LED display's initial Door Cycle read-out.
*Activate Cycle Code: DOWN Button

Open Accelerate Act (Down)*

The following Cycles are performed automatically by the C3150 Microprocessor Control. Illustrations below show the position of the door panels and the Display readout for each position.
*This demonstration assumes door was opened by the down button.

OPEN CYCLE

*Door actuated by local (Down) Button.

Braking Door

[^0]

Open Cushion

Time Delay 1

CLOSE CYCLE

- The LED display's Initial Close

Cycle read-out.

If there were no problems encountered during the Cycle Check procedure, if there are no parameters to be changed, and an Autolock is set-up, this concludes the C3150 Control's Initialization procedure.

If you are experiencing difficulty with the Control, refer to APPENDIX - A, Sheet H310.43.

Close Speed

Close Check

Close Cushion

Day 2-Way
Od: Oh: Om: Os

Close Accelerate

03. LINEAR DRIVE -ADJUSTING PARAMETERS

Step 1: Changing Parameter Settings

A chart of preset parameter values is shown on the next page. If any speeds or other settings need to be changed, follow the procedure listed below.

Turn the toggle (rocker) switch OFF (Blue LED on Control turns OFF).
\square Or, double-click the SET button (Blue LED stays ON).

- 'Door Off' Message blinks once, then P01 display window is shown.

\quad The display switches to the menu of adjustable parameters.
- Display window for P01 shown as example for changing the Open Speed.

Refer to Sheet H310.08 for a list of adjustable parameter codes. \square Scroll through the parameter list using the UP and DOWN buttons until the parameter to be changed is found.

EXAMPLE:

\square Hold the SET button and simultaneously press the UP or DOWN button to modify the Speed setting.

- Pressing the UP button changes the Speed Value to 76.

EXAMPLE:

\square Hold the SET button and simultaneously press the UP or DOWN button to modify the Speed setting.

- The DOWN button was pressed to change the Speed Value back to 75 (Default).
- The DOWN button was pressed a second time to change the Value to 74 (shown).
\square When the SET button is released, the display then shows the parameter that was changed along with the new value. Other parameters may be changed, or the toggle switch turned on to check the changes made.

Open Speed P01: 74

- The SET button may be double-clicked to exit the menu (toggle must be on).

Step 2: Saving Parameter Setings

The toggle switch must be on after all adjustments have been made and checked.

Press and hold the SET button until 'Data Saved' is displayed. All changes are now stored in the control's memory. This step must be performed or the control, in the event of a power failure, will revert to the last 'Data Saved' settings.

Data Saved

Day 2-Way Od: Oh: Om: Os

04. LINEAR DRIVE - ADJUSTABLE PRESET PARAMETERS

Step 1: List 'Standard and SuperTech' Parameter Settings Refer to APPENDX - G Sht. H310.53 for SuperTech Masking instrucions.

The Chart below shows all the adjustable parameters. To make changes, follow the procedure outlined in Step 1 on the previous page. The SuperTech Parameters allow access to proprietary features in the Parameter Menu. To access the SuperTech Parameters, hold the UP button while Double-Clicking the SET button.

NO.	PARAMETER	TYPE	RANGE $\mathbf{0 - 1 5 3 5}$	FACTORY DEFAULT	NOTES
P01	Open Speed	Standard	$10-97 \%$	75%	
P02	Open Check	Standard	$8-31 \%$	14%	
P03	Open Cushion	Standard	$8-31 \%$	12%	
P05	Close Speed	Standard	$8-56 \%$	38%	
P06	Close Check	Standard	$8-31 \%$	12	
P07	Close Cushion	Standard	$8-31 \%$	12	
P09	Delay 1	Standard	$2-255$ sec	2 sec	
P10	Delay 2 Partial Open	Standard	$2-255$ sec	2 sec	
P11	ClSpd Rev Force	Standard	$40-1000$	$* * *$	$* * 200 \%$ of learned max close speed current, units 1/10A.
P12	CIChk Rev Force	Standard	$20-400$	$* * * *$	$* * * 200 \%$ of learned max close check current, units 1/10A.
P13	Braking Level	Standard	$1-8$	6	$8=$ maximum deceleration.
P15	Network Address (Future Feature)	SuperTech	$0-247$	0	$0=$ communications disabled.
P16	Control Password	Standard	$0-9999$	0	$0=$ no password required.
P18	Day 2-Way Mask	SuperTech	$0-1535$	1535	Consult factory before modification.
P19	Day 1-Way Mask	SuperTech	$0-1535$	511	Consult factory before modification.
P20	Night 2-Way Mask	SuperTech	$0-1535$	0	Consult factory before modification.
P21	Night 1-Way Mask	SuperTech	$0-1535$	255	Consult factory before modification.
P22	Latch Timeout	Standard	$0-60$ min.	0	$0=$ latch does not time out.
P23	OpSpd Obst Force	Standard	$40-1200$	\dagger	$\dagger 200 \%$ of learned max open speed current, units 1/10A.
P24	OpChk Obst Force	Standard	$20-600$	$\dagger \dagger$	$\dagger+200 \%$ of learned max open check current, units 1/10A.
P34	Cycle Test	Standard	On/Off	Off	If on, door self cycles every 2 seconds. Used for testing.

04. LINEAR DRIVE - ADJUSTABLE PRESET PARAMETERS cont:

Step 1: List 'Standard and Super'Tech' Parameter Settings cont: Refer to APPENDIX - G Sht. H310.53 for SuperTech Masking Instructions.
The Chart below shows all the adjustable parameters. To make changes, follow the procedure outlined in Step 1 on page H310.07. The SuperTech Parameters allow access to proprietary features in the Parameter Menu. To access the SuperTech Parameters, hold the UP button while Double-Clicking the SET button.

NO.	PARAMETER	TYPE	RANGE $\mathbf{0}-\mathbf{1 5 3 5}$	FACTORY DEFAULT	NOTES
P35	Autoseal	Standard	On/Off	Off	
P36	Day/Night Sw Enable	Standard	On/Off	Off	Eliminates need for jumper wire if day/night input not used.
P37	Reduced Open Accel	Standard	On/Off	$* *$	${ }^{* *}$ ON for Series 2003, OFF for all others.
P41	Increase Lock Dly	Standard	On/Off	Off	
P42	Lock Present	Standard	On/Off	$* *$	$* *$ As learned upon control setup.
P43	Lock Type Fail Safe	Standard	On/Off	$* *$	$* *$ As learned upon control setup.
P44	Lock Has No Mon Sw	Standard	On/Off	Off	
P45	Lock in Day Modes	Standard	On/Off	$* *$	$* *$ OFF for belt drives, ON for linear drives.
P46	Lock in 1-Way Modes	Standard	On/Off	On	
P47	Resume on Aux1/2 Cir	Standard	On/Off	Off	
P48	CANbus Enable (Future Feature)	SuperTech	On/Off	Off	
P49	I/O Expansion Enable (Future Feature)	SuperTech	On/Off	Off	
P50	Extended Logging	SuperTech	On/Off	Off	Leave OFF when not troubleshooting to prolong control life.
P51	Power Fail Mode	Standard	Open/Close	Open	
P52	PFail Active Nights	Standard	On/Off	Off	
P58	Remote Mode Enable (Future Feature)	Standard	On/Off	Off	
P59	Stop Input N.C.	Standard	On/Off	Off	Parameter must be ON to Enable 'Stop Input' Feature.
P60	Fire Input N.C.	Standard	On/Off	Off	
P61	Int Sensor Monitored	Standard	On/Off	$* * *$	$* *$ Established by technician during control setup.
P62	Ext Sensor Monitored	Standard	On/Off	$* * *$	$* *$ Established by technician during control setup.
P63	Saf Beam Monitored	Standard	On/Off	$* * *$	$* *$ Established by technician during control setup.
P64	Aux1 Snsr Monitored	Standard	On/Off	Off	$* *$ Established by technician during control setup.
P65	Aux2 Snsr Monitored	Standard	On/Off	Off	$* * *$ Established by technician during control setup.
P72	High Sec Day 1-Way	SuperTech	On/Off	Off	Turned ON in Day 1-Way Mode, both Interior/Exterior Motion-Presence lnputs lgnored.
P73	Backlight Times Out	Standard	On/Off	On	If ON, Display Backlight Extinguishes when panel buttons are idle for 15 mins.

Step 2: Editing Parameter Settings:

 to open and close the door by measuring resistance caused by friction and inertia. An algorithm uses data to calculate the current that would be necessary to recycle the door in closing mode or slow the door during opening.

These Closing values are stored in Parameter 11 (Close Speed Reverse Force) and Parameter 12 (Close Check Reverse Force). The Opening values are stored in Parameter 23 (Open Speed Obstruction Force) and Parameter 24 (Open Check Obstruction Force). These Parameters may be edited manually to obtain precise adjustments.

Changing any of the Opening or Closing Speeds after initial setup may necessitate a re-learn of these Force values. This can easily be accomplished using the new DOWN button Double-Click feature.

SET
RESET
\square Open Obstruction:
In the fully closed position, Double-Click the DOWN button.

Obs Re-Learn Enabled

- 'OBS Re-Leam Enabled' message will appear and at the end of the next opening cycle, 'Obst Leam Complete' message will appear.
- Closing Force:

In the fully open position, Double-Click the DOWN button. The associated Parameter can be edited if tweaking is required to obtain optimum function.

Rev Re-Learn Enabled

Rev Learn Complete

- 'Rev Re-Learn Enabled' message will appear and at the end of the next opening cycle, 'Rev Learn Complete' message will appear.

Obst Learn Complete

5. LINEAR DRIVE - ACTUATION FEATURES

Refer to Section 14 - 'BELT DRIVE - ACTUATION FEATURES' on Sheet H310.22.
06. LINEAR DRIVE - IF FAILED AUTOLOCK SETUP

Step 1: Autolock Setup and Functions

Step 1: Autolock Setup and Functions cont:
Fail-Secure Lock The most common type of Autolock.

Fail-Safe Lock Aless common type of Autolock.

\sqcup C3876 Fail-Secure Autolock Installed in Series 2000 Header. (Partial Header Section Shown)

07. SETTING LOCK PARAMETERS

Refer to Section 16 - 'STEP 1: Lock Parameter Verification' on Sheet H310.27.

08. LOCK ERROR CODES

Refer to Section 17 - 'STEP 1: Lock Diagnostics' on Sheet H310.28.

09. AUTOLOCK TEST POINTS

Step 1: Monitored Autolocks

The Horton Monitored Autolocks are controlled by an output signal from the C3150 Control referred to as LOCK. The status of this output is indicated by an Orange LED (D38) that illuminates when the output is active.

- Lock Voltage Output at CN3 (Autolock Board) Anytime Lock output is active, measured voltage between pin $\mathbf{2}$ and pin 5 on CN3 of the Autolock Control Board should be approximately 5 Volts DC. For the Fail-Secure and Fail-Safe Lock, the solenoid should be energized.

\sqcup C3150 Control Board- Partial View

Solenoid Voltage Output at CN1

Initially, the solenoid will receive 25-33 volts to pull-in, but will quickly drop to approximately 10 volts in order to prevent overheating.
\sqcup Lock Monitor Switch
Horton Monitored Autolocks are equipped with a microswitch that provides an Input signal to the C3150 referred to as MON. The status of this output is indicated by a Yellow LED (D34).

C3842 Control Board
For Fail-Secure and Fail-Safe Autolocks

10. MICROSWITCHES - LINEAR DRIVE

Step 1: Microswitch Wiring

Microswitch harness (C2155-4) connects to CN3 'ROD' Input connector on C3150 Control Board.

\checkmark Microswitch Lace Input on C3150 Control Board
Microswitches will have continuity between Common
(COM) and Normally Open (NO) with the Switch Arm

Step 2: Partial Open Switch Wiring

For Installation of Partial Open Switch and Toggle Switch, refer to Installation Instructions provided.
Wire the C2236 Partial Open Switch to COM (Common-Orange Wire) and CLM (Close Monitor - White Wire) as shown. Wire the C3961 Toggle Switch to COM (Common - Black Wire) and PAR (Partial Open - White Wire).

11. C3150 CONTROL INITIALIZATION - BELT DRIVE

Step 1: Power-Up

Be sure the toggle circuit is complete before applying AC power to the unit. Caution: The Door will move.
${ }^{\circ}$ With power established, Control LED Displays the Door Mode and Type Traffic along with the Elapsed Time since last Reset.

- The Display then shows the Control Version and Date. Time reverts to '0' with each power loss or Reset. Maximum Time range is 180 days.

Version 15.04
(c) Horton 2019

Setup Request

Select Operator: S2000B/S2003 Belt

Select Operator 2001 Belt

Select Operator 2003 Belt Early

Select Operator 2001 Belt Early
\sqcup When the required Operator is displayed, press the SET button.
\lrcorner Press the UP button to Confirm Operator Type.
\square Press the DOWN button to recycle through Operator Types.
For Section 15 Only.
Continue to Section 15 Marker
at the top of the following sheet.

Setup - Confirm? UP=Yes, DOWN=No
\square Press the DOWN button for unmonitored Sensors.
\square Press the UP button if Sensors are connected and will be monitored. Refer to Section 2-Step 2, Sht. H310.02.

Press the DOWN button to Disable Day/Nite Switch.
\square Press the UP button to Enable Day/Nite Switch.
Section 15 Marker
Return to Section 15, Sht. H310.25.
The Control then searches for a Lock Device connected to the Operator. The Display will show one of the following codes depending on the Lock type connected. In case of difficulty with the Lock, refer to Section 15 'BELT DRIVE - IF FAILED AUTOLOCK SETUP' on Sheet H310.25.

Lock Type Codes:

- No Lock Detected.
- Fail Secure Lock Recognized.
- Fail Safe Lock Recognized.

The Door will fully close at slow speed, looking for the fully closed position.

If the Door travels a short distance then stops, the pre-wired Safety Beams or other actuating devices are stopping the door and preventing the 'Learn Cycle' from completing.
\square To continue the 'Learn Cycle', Press and Hold the UP button until the door closes.

The Door will travel slowly in the open direction until it reaches the full open position.

Checking for Lock... No Lock Detected

Checking for Lock... Fail Secure Lock

Checking for Lock... Fail Safe Lock

Close Check + Learn Learning Stroke

First Closed Paused

Open Check Learning Stroke

Total Stroke:
 $00 "(00 \mathrm{~cm})$

Step 2: Learn Cycle cont.

The Control will save the data from the Learn Cycle.

Data Saved

- Time Delay in seconds. Starts when Activation Signal releases and door is fully open.

Time Delay 1

- Learning Reversing Peak Current for Close Accelerate.

Close Accelerate Learning Rev Peak

- Learning Reversing Sensitivity for Closing Speed.

Close Speed Learning Rev Sens

- Learning Reversing Sensitivity for
Braking Door.

Braking Door Learning Rev Sens

- Learning Reversing Sensitivity for Close Cushion.
- Reversing Sensitivity Leaming Complete.

Rev Learn Complete

Learning Cycle Complete.

- The LED display returns to Initial read-out.

Day 2-Way
Od: Oh: Om: Os

Step 3: Checking Door Cycle

When the toggle switch is on, the DOWN button acts as an actuation device. Caution: The Door will move. Be sure the safety beam area is clear of obstructions. Activation devices should not yet be installed.
\square Start with the door in the closed position.
\square Press the DOWN button to actuate the door to open at factory selected default settings.
\sqcup Inspect the door unit for smooth operation free of binds and noise.

- The LED display's initial Door Cycle read-out.
*Activate Cycle Code: DOWN Button

Step 3: Checking Door Cycle cont.

The following Cycles are performed automatically by the C3150 Microprocessor Control. Illustrations below show the position of the door panels and the Display readout for each position.
*This demonstration assumes door was opened by the down button.

OPEN CYCLE

*Door actuated by local (Down) Button.
\square Motor Braking

*Braking may overide Open Check display. *Door actuated by local (Down) Button.
\square Open Cushion

\square Time Delay

CLOSE CYCLE

- The LED display's Initial Close Cycle read-out.

Close Speed

Close Check

Step 3: Checking Door Cycle cont.

The following graphics show the position of the door panels and the Display readout for each position.

OPEN CYCLE Cont:

- The LED display retums to Initial read-out.

Close Cushion

If there were no problems encountered during the Cycle Check procedure, if there are no parameters to be changed, and an Autolock is set-up, this concludes the C3150 Control's Initialization procedure.

If you are experiencing difficulty with the Control, refer to APPENDIX - A, Sheet H310.43.

12. BELT DRIVE - ADJUSTING PARAMETERS

Step 1: Changing Parameter Settings

A chart of preset parameter values is shown on the next page. If any speeds or other settings need to be changed, follow the procedure listed below.
\square Tum the toggle (rocker) switch OFF (Blue LED on Control turns OFF).
\sqcup Or, double-click the SET button.

- 'Door Off Message blinks once, then P01 display window is shown.
\square The display switches to the menu of adjustable parameters.
- Display window for P01 shown as example for changing the Open Speed.
\square Refer to attached chart for a list of adjustable parameter codes.
\sqcup Scroll through the parameter list using the UP and DOWN buttons until the parameter to be changed is found.

EXAMPLE:

\lrcorner Hold the SET button and simultaneously press the UP or DOWN button to modify the Speed setting.

- Pressing the UP button changes the Speed Value to 76.
\qquad

Step 1: Changing Parameter Settings cont.

EXAMPLE Cont:
\square Hold the SET button and simultaneously press the UP or DOWN

button to modify the Speed setting.

- The DOWN button was pressed to change the Speed Value back to 75 (Default).
- The DOWN button was pressed a second time to change the Value to 74 (shown).

Decreased Speed
Value to 74

```
Open Speed
P01: 74
```

Open Speed P01:

74 parameters may be changed, or the toggle switch turned on to check the changes made.

- The SET button may be double-clicked to exit the menu (toggle must be on).

Day 2-Way Od: 0h: 0m: Os

Step 2: Saving Parameter Settings

The toggle switch must be on after all adjustments have been made and checked.

Press and hold the SET button until 'Data Saved' is displayed. All changes are now stored in the control's memory. This step must be performed or the control, in the event of a power failure, will revert to the last 'Data Saved' settings.

Data Saved

13. BELT DRIVE - ADJUSTABLE PRESET PARAMETERS

Step 1: List 'Standard and SuperTech' Parameter Settings Referto APPENDIX-G Sht. H310.53 for Masking Paremeters in SuperTech Menu.

The Chart below shows all the adjustable parameters. To make changes, follow the procedure outlined in Step 1 on the previous page. The SuperTech Parameters allow access to proprietary features in the Parameter Menu. To access the SuperTech Parameters, hold the UP button while Double-Clicking the SET button.

NO.	PARAMETER	TYPE	RANGE $\mathbf{0 - 1 5 3 5}$	FACTORY DEFAULT	NOTES
P01	Open Speed	Standard	$10-97 \%$	75%	
P02	Open Check	Standard	$8-31 \%$	14%	
P03	Open Cushion	Standard	$8-31 \%$	12%	
P04	Open Check Point	Standard	$*$	75%	$*$ Min $50 \%,{ }^{*}$ Max 90% of learned stroke (in Inches based on \% of Full Stroke).
P05	Close Speed	Standard	$8-56 \%$	38%	
P06	Close Check	Standard	$8-31 \%$	$*$	$* 14 \%$ for Series 2001, 12\% for all others.
P07	Close Cushion	Standard	$8-31 \%$	12	
P08	Close Check Point	Standard	$10-50 \%$	17	
P09	Delay 1	Standard	$2-255 \mathrm{sec}$	2 sec	
P10	Delay 2 Partial	Standard	$2-255 \mathrm{sec}$	2 sec	
P11	CISpd Rev Force	Standard	$40-1000$	$* * *$	$* * * 200 \%$ of learned max close speed current, units 1/10A.
P12	CIChk Rev Force	Standard	$20-400$	$* * *$	$* * * 200 \%$ of learned max close check current, units 1/10A.
P13	Braking Level	Standard	$1-8$	6	$8=$ maximum deceleration.
P14	Total Stroke	Standard	$12 "-299 "$	$* *$	$* *$ As learned upon control setup. Read-only Parameter.
P15	Network Address (Future Feature)	SuperTech	$0-247$	0	$0=$ communications disabled.
P16	Control Password	Standard	$0-9999$	0	$0=$ no password required.
P17	Partial Open Point	Standard	$8-100 \%$	50%	Maximum is 100% of learned stroke.

13. BELT DRIVE - ADJUSTABLE PRESET PARAMETERS cont:

Step 1: List 'Standard and SuperTech' Parameter Settings cont. Refert toAPPENDIX - G Sht. H310.53 for Masking Parameters in SuperTech Menu.
The Chart below shows all the adjustable parameters. To make changes, follow the procedure outlined in Step 1 on page H310.19. The SuperTech Parameters allow access to proprietary features in the Parameter Menu. To access the SuperTech Parameters, hold the UP button while Double-Clicking the SET button.

NO.	PARAMETER	TYPE	$\begin{aligned} & \text { RANGE } \\ & 0-1535 \end{aligned}$	FACTORY DEFAULT	NOTES
P18	Day 2-Way Mask	SuperTech	0-4096	1535	Refer to Appendix - G, Sht. H310.53 for Masking Parameter in SuperTech Menu.
P19	Day 1-Way Mask	SuperTech	0-4096	511	Refer to Appendix - G, Sht. H310.53 for Masking Parameter in SuperTech Menu.
P20	Night 2-Way Mask	SuperTech	0-4096	0	Refer to Appendix - G, Sht. H310.53 for Masking Parameter in SuperTech Menu.
P21	Night 1-Way Mask	SuperTech	0-4096	255	Refer to Appendix - G, Sht. H310.53 for Masking Parameter in SuperTech Menu.
P22	Latch Timeout	Standard	0-60 min.	0	$0=$ latch does not time out.
P23	OpSpd Obst Force	Standard	40-1200	\dagger	$\dagger 200 \%$ of learned max open speed current, units 1/10A.
P24	OpChk Obst Force	Standard	20-600	$\dagger \dagger$	†† 200\% of learned max open check current, units 1/10A.
P34	Cycle Test	Standard	On/Off	Off	If on, door self cycles every 2 seconds. Used for testing.
P35	Autoseal	Standard	On/Off	Off	
P36	Day/Night Sw Enable	Standard	On/Off	Off	Eliminates need for jumper wire if day/night input not used.
P37	Reduced Open Accel	Standard	On/Off	**	${ }^{* *}$ ON for Series 2003, OFF for all others.
P39	ANSI Speed Limiting	SuperTech	On/Off	On	
P40	First Run Stop OK	Standard	On/Off	On	
P41	Increase Lock Dly	Standard	On/Off	Off	
P42	Lock Present	Standard	On/Off	**	${ }^{* *}$ As learned upon control setup.
P43	Lock Type Fail Safe	Standard	On/Off	**	**As learned upon control setup.
P44	Lock Has No Mon Sw	Standard	On/Off	Off	
P45	Lock in Day Modes	Standard	On/Off	**	**OFF for belt drives, ON for linear drives.
P46	Lock in 1-Way Modes	Standard	On/Off	On	
P47	Resume on Aux1/2 Cir	Standard	On/Off	Off	
P48	CANbus Enable (Future Feature)	SuperTech	On/Off	Off	
P49	I/O Expansion Enable (Future Feature)	SuperTech	On/Off	Off	
P50	Extended Logging	SuperTech	On/Off	Off	Leave OFF when not troubleshooting to prolong control life.
P51	Power Fail Mode	Standard	Open/Close	Open	
P52	PFail Active Nights	Standard	On/Off	Off	
P58	Remote Mode Enable (Future Feature)	Standard	On/Off	Off	
P59	Stop Input N.C.	Standard	On/Off	Off	
P60	Fire Input N.C.	Standard	On/Off	Off	
P61	Int Sensor Monitored	Standard	On/Off	***	***Established by technician during control setup.
P62	Ext Sensor Monitored	Standard	On/Off	***	***Established by technician during control setup.
P63	Saf Beam Monitored	Standard	On/Off	***	***Established by technician during control setup.
P64	Aux1 Snsr Monitored	Standard	On/Off	Off	***Established by technician during control setup.
P65	Aux2 Snsr Monitored	Standard	On/Off	Off	${ }^{* * *}$ Established by technician during control setup.
P69	Sensor Test Before Opening	SuperTech	On/Off	Off	Turned ON for European Standards Compliance.
P70	Aux3-4 = Secondary Activation	Standard	On/Off	Off	Turned ON to facilitate hardwiring 'Knowing Act' switches.
P71	Turned ON to Implement 3 Button Switch	Standard	On/Off	Off	Turned ON to Implement 3 Button Station (Refer to Append.- H, Sht. H310.55)
P72	High Sec Day 1-Way	SuperTech	On/Off	Off	Turmed ON in Day 1-Way Mode both Interior/Exterior Motion-Presence Inputs lgnored.
P73	Backlight Times Out	Standard	On/Off	On	If ON, Display Backlight Extinguishes when panel buttons are idle for 15 mins.

Step 2: Editing Parameter Settings

During initial setup, the C3150 Control monitors motor current required to open and close the door by measuring resistance caused by friction and inertia. An algorithm uses data to calculate the current that would be necessary to recycle the door in closing mode or slow the door during opening.
These Closing values are stored in Parameter 11 (Close Speed
Reverse Force) and Parameter 12 (Close Check Reverse Force). The Opening values are stored in Parameter 23 (Open Speed Obstruction Force) and Parameter 24 (Open Check Obstruction Force). These Parameters may be edited manually to obtain precise adjustments.

SET

Obs Re-Learn Enabled

In the fully closed position, Double-Click the DOWN button.

- 'OBS Re-Learn Enabled'message will appear and at the end of the next opening cycle, 'Obst Learn Complete' message will appear.

Closing Force:
In the fully open position, Double-Click the DOWN button. The associated Parameter can be edited if tweaking is required to obtain optimum function.

- 'Rev Re-Learn Enabled' message will appear and at the end of the next opening cycle, 'Rev Leam Complete' message will appear.

Obst Learn Complete

Rev Re-Learn Enabled

Rev Learn Complete

14. BELT DRIVE - ACTUATION FEATURES

Step 1: Setting Control Operating Modes

Set Jumpers and/or Parameters for the type operation required. Switches may be used in lieu of Jumpers.

\square 2-Way Day Mode:

Default setting requires no connections.

- Int and Ext Motion Activate.
- All Sensors Hold-Open and Recycle.

Day 1-Way
Od: Oh: Om: Os

Step 1: Setting Control Operating Modes cont.
Set Jumpers and/or Parameters for the type operation required. Switches may be used in lieu of Jumpers.

2-Way Night Mode:

Turn ON Parameter 36.
The Control is in Night Mode with no connections made.

- No Sensors Activate or Hold-Open.
- Only Beams can trigger a Recycle.

With Parameter 36 turned ON. Connect COM Input on CN1 to DAY-NITE Input on CN4.

1-Way Night Mode:
Connect COM Input on CN1 to 1 WAY Input on CN4 and DAY-NITE Input on CN4.

- No Activation.
- All Sensors Hold-Open and Recycle.

Night 1-Way Od: Oh: Om: Os

Step 2: Switch Input Signals to CN4

Various switches wired to CN4 Inputs are shown in the lllustration at right and described below.

TOG (Toggle):
Toggle Switch and Breakout Switches wired in series. An open circuit halts operation.
-A-
ACT (Actuate):
A Momentary Contact Switch activates door regardless of Mode. Used by Pushbuttons, Card Readers and Touchless Switches.
CLM (Close Monitor Switch): If a Close Monitor Switch is present, the software will recognize it automatically and utilize it in future cycles. This eliminates the learn cycle necessary with the standard 'No Close Monitor Switch'function and can be used in situations with unreliable power.

PAR (Partial):
Connecting this Input to COM causes the door to open partially as defined in Parameter 17 on Belt Drive. For Linear Drive, refer to H310.14, Step 2 Illustration.

Step 2: Switch Input Signals to CN4 cont:

\square AUX-3 (Auxillary):
'CLOSE' Button on 3-Position Switch. No Sensors are Active. Close Input cancels Time Delay and Closes door.
Refer to Refer to APPENDIX - H, Sht. H310.55 for Installation of 3-Positon Push Button Switch using Inputs $A \cup X 3, A \cup X 4$ and $A \cup X 5$ of CN4.

\sqcup AUX- 4 (Auxillary):
'STOP' Button on 3-Position Switch.
Activating STOP halts door operation.

\square AUX- 5 (Auxillary):
'OPEN' Button on 3-Position Switch.
Latch Switch Activation. Press to OPEN, Press to CLOSE.

- Momentary contact OPENS door. Display reads:

> Open Accel > Open Speed > (Act) Latch Act) Latch Open Check > Open Cushion (Act) Latch (Act) Latch

- With door at Full Open, display reads:
- Second Momentary contact CLOSES door. Parameter - P22 Latch Timeout.

AUX- 6 (Auxillary): Presently Not Used.
Fire Alarm Input.
Set Parameter 60 to ON. Normally Closed Fire Alarm contact connected to AUX 6 and COM.

- Fire Alarm is activated opening Circuit. Door then OPENS.

Step 3: Switch Input Signals to CN15 and CN16

\square AUX1 and AUX2 (Auxillary):
Used for Sidelight Protection from a variety of sensors. Use E06302.0001 wiring harness to connect to 6-pin connector.

- If triggered during the opening cycle, door slows to Check Speed.

Day 2-Way

Stop Input N.C. P59
 OFF

Open Accel

 (Act) Latch
Hold:

Latched

Close Accel > Close Speed > Close Check > Close Cushion >

Day 2-Way
0d: Oh: Om: Os

Fire Alarm Input N.C. P60: OFF

Hold:

Fire Input

Step 4: Switch Input Signals to CN7

\square AUX7 (Auxillary):
Dedicated Input for E06970 Power-Fail Open Module.
Refer to APPENDIX - K, Sht. H310.59 and
WIRING DIAGRAM on Sht. H310.60 for
C3809 Power Fail Assembly Instructions.

Monitored Sensors? UP=Yes, DOWN=No

Checking for Lock...

 Fail Secure Lock
Checking for Lock... Fail Safe Lock

Checking for Lock...

Orange Lock Monitor light comes $\mathbf{O N}$ with no change to YELLOW Lock Monitor Light indicates a 'No Lock' situation or a malfunction of Lock.
There is a slight delay before the 'No Lock Detected' message appears.

Step 1: Autolock Setup and Functions cont:

Fail-Secure Lock
The most common type of Autolock.

Fail-Safe Lock
Aless common type of Autolock.

TOP VIEW-LOCKED
With Power Removed, Solenoid
Extends By Spring. Door Locks.

TOP VIEW- UNLOCKED
With Power Applied, Solenoid
Retracts By Spring. Door Unlocks.

C5656-2 Fail Secure AutoLock (2003 Shown- 2001 Similar)
Door remains Locked at Power Failure.

For Fail-Secure, Set both Jumpers on JB1 Pins as Jumper

TOP VIEW-UNLOCKED With Power Removed, Solenoid Extends By Spring. Door Unlocks.

TOP VIEW- LOCKED
With Power Applied, Solenoid Retracts By Spring. Door Locks.

C5657-2 Fail Safe AutoLock (2003 Shown- 2001 Similar)
Door Unlocks at Power Failure.

16. SETTING LOCK PARAMETERS

Step 1: Lock Parameter Verification

 The following lock parameters will be set automatically if using a Horton Monitored Lock.

\square For a Fail-Secure Lock, turn ON Parameter P42 'Lock Present'.
\square For a Fail-Safe Lock, turn ON parameter P42 'Lock Present' and P43 'Lock Type Fail Safe'.

A Chart of preset lock parameters is shown at right for your reference.

NO.	PARAMETER	FACTORY DEFAULT	RANGE
P42	Lock Present	Off	On/Off
P43	Lock Type Fail Safe	Off	On/Off
P44	Lock Has No Mon Sw	Off	On/Off
P45	Lock in Day Mode	Off	On/Off
P46	Lock in 1-Way Mode	On	On/Off

\square The settings below will identify the lock type. Note that by default, the locks will engage only in the NIGHT MODE.

- The control has detected a lock device connected to the Operator.

Lock Present
 P42: On

- Control parameter indicates Lock is Fail-Secure.

Lock Type Fail Safe
P43: Off

- Control parameter indicates Lock is Fail-Safe.

Lock Type Fail Safe P43: On

- With parameter P45 ON, door will lock in Day Mode (Full Time).

Lock in Day Mode

P45: On

- With parameter P46 ON, door will only lock in 1-Way Mode.
- If using a non-monitored lock such as a magnetic lock, this parameter is used to provide a brief delay to allow the lock time Lock Has No Monitor Sw P44: On

17. LOCK ERROR CODES

Step 1: Lock Diagnostics

Fail-Secure Lock - Failed To Unlock Condition
When the C3150 Control equipped with a Fail-Secure Lock is given an Open command, the control issues a Lock output signal (Orange LED) and waits for the MON (Lock Monitor Switch) Yellow LED to illuminate.
If the Control fails to receive the MON unlock verification signal, the Yellow LED does not come on.

- 'Failed to Unlock' message displayed. Control then performs a 'Jog' routine to unblock the door.

Fail-Secure Lock - Door Binding

When a door with a C3150 Control and equipped with a FailSecure Lock closes, the solenoid releases its spring, engaging a mechanism that locks the door.

Lock Monitor Switch (yellow LED) remains On indicating a mechanical bind or displaced Monitor Switch.

- 'Failed to Lock' message displayed for 1 second.
- Display then shows default 'Day 2-Way' Mode Setting.

Fail-Safe Lock - Failed To Unlock Condition
When a door with a C3150 Control and equipped with a FailSafe Lock is given an Open command. Control turns Off Lock output signal (Orange LED) and waits for solenoid to de-energize and the MON input to illuminate.
If the Control fails to receive the MON unlock verification signal, the Yellow LED does not come on.

- 'Failed to Unlock' message displayed.

Fail-Safe Lock - Door Binding
When a door with a C3150 Control and equipped with a FailSecure Lock closes, the Lock output (Orange LED) illuminates and the solenoid locks the door.

Lock Monitor Switch (yellow LED) remains On indicating a mechanical bind or displaced Monitor Switch.

- 'Failed to Lock' message displayed for 1 second.

Failed to Unlock

Failed to Lock

Failed to Unlock

Failed to Lock

17. LOCK ERROR CODES

Step 1: Lock Diagnostics cont:

\square Fail-Secure Lock - Failed to Lock Condition cont:

- Display then shows default 'Day 2-Way' Mode Setting.

Day 2-Way 0d: Oh: Om: Os

18. AUTOLOCK TEST POINTS

Step 1: Monitored Autolocks

The Horton Monitored Autolocks are controlled by an output signal from the C3150 Control referred to as LOCK. The status of this output is indicated by an Orange LED (D38) that illuminates when the output is active.

\llcorner Lock Voltage Output at CN3

Anytime Lock output is active, measured voltage between pins 2 and pin 5 on CN3 of the Autolock Control Board should be approximately 5 Volts
DC. For the Fail-Secure and Fail-Safe Lock, the solenoid should be energized.

\square C3150 Control Board- Partial View

\square Solenoid Voltage Output at CN1

Initially, the solenoid will receive 25 - 33 volts to pull-in, but will quickly drop to approximately 10 volts in order to prevent overheating.
\quad Lock Monitor Switch
Horton Monitored Autolocks are equipped with a microswitch that provides an Input signal to the C3150 referred to as MON. The status of this output is indicated by a Yellow LED (D34).

18. AUTOLOCK TEST POINTS

Step 1: Monitored Autolocks Cont:

\square Monitor Switch Input Active
If MON Input is active (D34 Yellow LED is on), for Fail-Secure or Fail-Safe locks, the door can be opened manually or via the motor.
This function can be tested by manually cycling the lock and watching MON LED for status change.

- Fail-Secure Locks = LOCK and MON illuminate simultaneously.
- Fail-Safe Locks = LOCK and MON illuminate alternately.

D34 Monitor Switch Yellow LED
 D38
 Lock Output Orange LED
 CN10 AutoLock Input

 Connector

C3150 Control Board- Partial View

19. DIAGNOSTICS- LINEAR AND BELT DRIVE

Step 1: Entering Diagnostic Menu

\square To enter the Diagnostic Menu, double-click the UP button.

- Display Message blinks:
- Then Display message shows:
\square Or press the UP and RESET buttons simultaneously, then release the RESET button contining to hold the UP button.
- Display Message blinks:
\sqcup Then release the UP button.

> - Display Message shows:

D01-Multifunction Test

A. Navigating Thru Functions

The Multifunction Test is provided to enable the Technician the ability to isolate and verify features of the C3150 Control. This diagnostic tool can be used to verify Inputs from the encoder, microswitches, locks (Lock Monitor), and the Close-Monitor (optional- requires additional hardware). It also displays the Output from the Control that activates the Lock Solenoid.
In addition to these features, the Multifunction Diagnostic can be used to drive the motor forward and in reverse (at Open-Check or Close-Check speed) to verify proper motor function. Likewise, the Autolock can be tested for proper function using the SET button.
In the D01 Section, Motor/Encoder Test, the UP and DOWN buttons drive the door OPEN or CLOSED respectively. The SET button controls the Lock Function. Note that the display messages will vary depending on the door operator type.

- Display viewed with no buttons pushed.

Diagnostic Menu

Multifunction Test

Diagnostic Menu

Multifunction Test D01
 SET: Go

Multifunction Test
D01
SET: Go

Encoder: 0 LKMon

Only if Fail-Safe Lock installed.

19. DIAGNOSTICS- LINEAR AND BELT DRIVE

D01- Multifunction Test

B. Motor and Encoder Test - Belt Drive Units

- To Test the Motor and Encoder, press the SET button.
- Display Message Reads:

Encoder: 0

- Display viewed with no buttons pushed.

Press the UP button to drive the door open. Encoder Counts are displayed at the top of the message with the Voltage and Current at the bottom of the message. The Voltages/Current settings shown are reflected in the Open-Check speed setting.

Changing Open-Check will raise or lower Voltage/Current readings. Temporarily lowering values will slow the encoder counter making it easier to read.

Press DOWN button to drive the door closed. Encoder Counts are displayed at the top of the message with the Voltage and Current at the bottom of the message. The Voltages/Current setting shown are reflected in the Close-Check speed setting.

Changing Close-Check will raise or lower Voltage/Current readings. Temporarily lowering values will slow the encoder counting to make it easier to read. It is not unusual for the Count to fail to retum completely to 0 due to mechanical tolerances.

D01- Multifunction Test

C. Fail-Secure Lock Test - Belt Drive Units

- Display Initial Message reads:
\square To Test the Fail-Secure Lock, press the SET button, Solenoid will engage.
- Display Message shows Lock and Lock Monitor:

Encoder: 0

Encoder: 0 Lock
 LKMon

D34
Monitor Switch
Yellow LED
D38
Lock Output
Orange LED

- Lock (D38) and Lock Monitor (D34) LED Lights are illuminated on C3150 Control Board.

19. DIAGNOSTICS- LINEAR AND BELT DRIVE

D01- Multifunction Test

D. Fail-Safe Lock Test - Belt Drive Units Cont:
\square The Fail-Safe Lock and Lock Monitor are present and connected.

- Display Initial Message reads:

Encoder: 0
LKMon

- Lock Monitor (D34) LED Light is illuminated on C3150 Control Board.

To Test the Fail-Safe Lock, press the SET button. The Solenoid then engages.

- Display Message then changes from LKMon to Lock as shown:
- Lock Monitor (D34) LED Light extinguishes on C3150 Control Board while Lock (D38) LED illuminates.

D01- Multifunction Test

E. Motor and Microswitch Test - Linear Drive Units
\square To Test the Motor and Microswitches, press the SET button.

- Display viewed with no buttons pushed.
*Depending on door position, display will read 'Close Cutoff', 'Close-Check', 'Door Mid-Stroke', 'Open-Check' or 'Open-Cutoff'.

Encoder: 0 Lock
D34
Monitor Switch
Yellow LED
D38
Lock Output
Orange LED

ant extin-
lard while

Close Cutoff* Lock / LKMon

Only if Lock installed.

19. DIAGNOSTICS- LINEAR AND BELT DRIVE

D01- Multifunction Test
 E. Motor and Microswitch Test - Linear Drive Units Cont:

\square Press the UP button to drive the door open. The Voltage/Current setting shown are reflected in the Open-Check speed setting.

Changing Open-Check will raise or lower Voltage/Current readings. Temporarily lowering values will slow the encoder counter making it easier to read.

- Display Message at Close-Cutoff Switch reads:
- Display Message in Close-Check Zone reads:
- Display Message at Mid-Stroke (No Switches Tripped) reads:
- Display Message in Open-Check Zone reads:

Open Check
Drive: 17.2V,*
0.90A*

- Display Message at Open-Cutoff Switch reads:

Close Cutoff
 Drive: 17.2V,* 0.90A*

Close Check
 Drive: 17.2V,*
 0.90A*

Door Mid Stroke
Drive: 17.2V,*
0.90A*

Open Cutoff Drive: 17.2V,*

Press the DOWN button to drive the door closed. The Voltage/
*Display Settings shown above and below will vary. Current setting shown are reflected in the Close-Check speed setting.

Changing Close-Check will raise or lower Voltage/Current readings.

- Display Message at Open-Cutoff
Switch reads:
- Display Message in Open-Check
Zone reads:

Display Message at Mid-Stroke (No Switches Tripped) reads:

- Display Message in Close-Check Zone reads:

Door Mid Stroke
Drive: 17.2V,*
0.90A*

Open Cutoff
Drive: 17.2V,* 0.90A*

Open Check
Drive: 17.2V,*
0.90A*

Close Check
Drive: 17.2V,*
0.90A*
19. DIAGNOSTICS- LINEAR AND BELT DRIVE

D01- Multifunction Test
E. Motor and Microswitch Test - Linear Drive Units Cont:

- Display Message at Close-Cutoff Switch reads:

Close Cutoff

Drive: 17.2V,* 0.90A*
*Display Settings shown above will vary.

Close Cutoff

- Display Message reads:

Solenoid will engage.

- **Depending on door position, display will read 'Close Cutoff', 'Close-Check', 'Door Mid-Stroke', 'Open-Check' or 'Open-Cutoff'.
Display Message shows Lock and Lock Monitor.
D01- Multifunction Test
F. Fail-Secure Lock Test - Linear Drive Units
\square To Test the Fail-Secure Lock:
(A) Press the SET button.

- **Depending on door position, display
will read 'Close Cutoff, 'Close-Check',
'Door Mid-Stroke', 'Open-Check' or
'Open-Cutoff.
Display Message shows Lock and Lock
Monitor.

Close Cutoff ** Lock LKMon

Close Cutoff*

- *Depending on door position, display will read 'Close Cutoff, 'Close-Check', 'Door Mid-Stroke', 'Open-Check' or 'Open-Cutoff'.
- Lock (D38) and Lock Monitor (D34) LEDs are extinguished on C3150 Control Board.

19. DIAGNOSTICS- LINEAR AND BELT DRIVE

D01-Multifunction Test
 G. Fail-Safe Lock Test - Linear Drive Units

\square To Test the Fail-Safe Lock:
(A) Press the SET button.

- Display Message reads:

Close Cutoff* LKMon

\square Solenoid will engage.

- *Depending on door position, display
will read 'Close Cutoff, 'Close-Check', 'Door Mid-Stroke', 'Open-Check' or 'Open-Cutoff'.

Close Cutoff* Lock

Display Message shows Lock.
\qquad D34
Monitor Switch Yellow LED D38 Lock Output

- Lock (D38) is illuminated and Lock Monitor (D34) LED extinguishes on C3150 Control Board.
\square (B) Release the SET button.
- *Depending on door position, display will read 'Close Cutoff', 'Close-Check', 'Door Mid-Stroke', 'Open-Check' or 'Open-Cutoff'.

Close Cutoff*

 LKMon- Lock (D38) is extinguished and Lock Monitor (D34) LED is illuminated on C3150 Control Board.

D02-Show Supply Voltages

D02 on the Diagnostics Menu shows supply voltages. Enter the Diagnostics Menu then press the UP or DOWN button to navigate to the various Sections D01 through D08.
Note that double-clicking the SET button returns you to the previously visited Section in Diagnostic Menu. Pressing the RESET button exits the Diagnostic Menu.
\square To enter the Diagnostic Menu, double-click the UP button.

- Display Message blinks:
- Then Display message shows:

D02 Show Supply Voltages

\sqcup To enter the D02 'Show Supply Voltages' Section, press the UP button.

> - Display message shows:
\square To show the supply voltages, press the SET button.

- Display Message shows: V1- High Voltage V2- Low Voltage V3-Factory Only V4-Factory Only

Double-click the SET button to return to the last section visited in the Diagnostic Menu.

- Display flashes the message,'Returning to Menu' or D02 in this case. Message then reads:

D03 - Read Counters (Counts by Multiples of 10)

\sqcup To enter the D03 'Read Counters' Section, press the UP or DOWN button to navigate to D03.

- Display message reads:
\square To view the counters, press the SET button.
- Display Message reads:
\square Double-click the SET button to return to the last section visited in the Diagnostic Menu.
- Display flashes the message,'Returning to Menu' or D03 in this case. Message then reads:

Show Supply Voltages D02

 SET: Go
Diagnostic Menu

Show Supply Voltages

Read Counters

SET: Go

Cycles: 0
 Hobbs:
 59

Values shown will vary.

Read Counters

D03
SET: Go

19. DIAGNOSTICS- LINEAR AND BELT DRIVE

D04-Read Log

\square To enter the D04 'Read Log'Section, press the UP or DOWN button to navigate to D04.

- Display message reads:

Read Log
D04
SET: Go

Log is Empty

$■$ List of possible D04 Event Codes - 'Always Logged' that would be viewed on the 'Read Log' if applicable.

D04 EVENT CODES ALWAYS LOGGED	
1.	+15 V Supply Failure
2.	+24 V Supply Failure
3.	+120 V Supply Failure
4.	Attempting Restart
5.	Aux Act On $>60 \mathrm{~s}$
6.	Aux1 On $>60 \mathrm{~s}$
7.	Aux1 Test Fail
8.	Aux2 On $>60 \mathrm{~s}$
9.	Aux2 Test Fail
10.	Close Check Timeout
11.	Close Speed Timeout
12.	Cls Accel Pulse Loss
13.	Cls Check Pulse Loss

D04 EVENT CODES ALWAYS LOGGED	
14.	Cls Speed Pulse Loss
15.	EEPROM Failure
16.	Encoder Failure
17.	Ext Motion On >60s
18.	Ext Presnc On > 60s
19.	Ext Sensor Test Fail
20.	Failed to Lock
21.	Failed to Unlock
22.	Full Open
23.	Illegal Instruction
24.	Int Motion On $>60 \mathrm{~s}$
25.	Int Presnc On > 60s
26.	Int Sensor Test Fail

D04 EVENT CODES ALWAYS LOGGED	
27.	Motor Drive Failure
28.	Motor Failure
29.	No Close Spd Harness
30.	No Open Spd Harness
31.	Open Accel Pulse Loss
32.	Open Check Pulse Loss
33.	Open Check Timeout
34.	Open Speed Timeout
35.	Opn Speed Pulse Loss
36.	Saf Beam On > 60s
37.	Saf Beam Test Fail
38.	Watchdog Timeout

D05 Clear Cycle Counter

\square To enter the D05 'Clear Cycle Counter' Section, press the UP or DOWN button to navigate to D05.

> - Display message reads:
\sqcup To clear the counter, press the SET button.

- Display Message reads:

Clear Cycle Counter D05
 SET: Go

19. DIAGNOSTICS- LINEAR AND BELT DRIVE

D05 Clear Cycle Counter Cont:

\square Press the UP button to proceed or press the DOWN button to return to D05 'Clear Cycle Counter'Section.

- If the UP button is pressed, display reads:

Double-click the SET button to return to the last section visited in the Diagnostic Menu.

- Display flashes the message,'Retuming to Menu' or D05 in this case. Message then reads:

D06 Clear Log

\square To enter the D06 'Clear Log'Section, press the UP or DOWN button to navigate to D06.

- Display message reads:
\square To clear the log, press the SET button.
- Display Message reads:
\square Press the UP button to proceed or press the DOWN button to return to D06 'Clear Log' Section.
- If the UP button is pressed, display reads:

Double-click the SET button to return to the last section visited in the Diagnostic Menu.

- Display flashes the message,'Retuming to Menu' or D06 in this case. Message then reads:

Clear Log

 D06
SET: Go

Log Cleared

Zero Stroke D07

SET: Go
19. DIAGNOSTICS- LINEAR AND BELT DRIVE

D07-Zero Stroke Cont:

\sqcup Press the UP button to proceed or press the DOWN button to return to D07 'Zero Stroke' Section.

- If the UP button is pressed, display reads:

Double-click the SET button to retum to the last section visited in the Diagnostic Menu.

- Display flashes the message,'Returning to Menu' or D07 in this case. Message then reads:

Stroke Zeroed

\square When the SET button is pressed, the motor will spin the rod in a direction that will close the door ignoring all motion sensors. Place a Force Gauge between the jamb and the strike edge of the door. Adjust to 28 lbs. by tightening or loosening the bolts shown in the illustration below with a wrench or channel lock pliers.

\square For Linear Drive Operators only. To proceed, press the SET button. Note that the Control knows the Operator is a Belt Drive Unit and will respond accordingly.

- Display Message reads:

D09 - Show Misc. Information

\square Information to Add in Advanced Troubleshooting with Factory Tech's Help.

$$
\begin{array}{lll}
\bullet & \text { OpAcl } & \text { Trip Point } \\
\circ & 0.63 \mathrm{~A} \\
\circ & \text { ClAcl } & \text { Trip Point }
\end{array} 0.44 \mathrm{~A}
$$

Troubleshooting_Power Supply on C3150 Control v15.04

The C03150.1500 Control has line voltage coming into connector CN9. Pin 1 is line voltage (black) and pin 2 is neutral (white). Refer to Image 1 below.

Figure 1, C3150 Slide Door Microprocessor Control Board

1. The 120 Volt AC Line Voltage (pin 1 on CN9) is connected directly to the right side Fuse F1 (3.15 amp slow blow 5×20) via the printed circuit board. The left side of F1 Fuse supplies current to one side of the transformer's primary winding via connector CN 11 pin 7 (white wire) and CN11 pin 2 (orange wire). This line is also connected in-parallel to the primary winding of the transformer via connector CN11 pin 6 (black wire) and CN11 pin 1 (brown wire).

If incoming power AC voltage is detected at CN9 pin 1 and 2 (Image 1), leave multimeter lead on CN9 pin 2 (neutral- white wire) and move the other lead to the far side of F1 fuse (Image 2 below).

Volts AC Detected
Multimeter

Troubleshooting_Power Supply on C3150 Control v15.04 cont:

2. Retum from the transformer to the neutral side of the incoming power is via a parallel connection CN 11 pin 7 (white wire) and CN11 pin 2 (orange wire).
3. The Transformer's 18 volt secondary winding is connected to the C3150 control through the green wires at CN11 pin 4 and CN11 pin 9. It can be tested by connecting multimeter to CN11 pin 4 (green wire) and lead of RT1 that is closest to the fuse (Image 3 at right). If the transformer is good, multimeter should detect 18-20 volts AC. Move red lead to the opposite lead on RT1, voltage should be approximately the same. If RT1 contact has opened because of overcurrent, voltage here will be much less.

4. The 24 Volt DC supply is produced by connecting the 18 Volt AC secondary tap to rectifier D5 through (RT1) which is a PPTC and can be thought of as a resettable fuse. This rectified circuit is filtered by capacitors C110 and C11 to produce an unregulated 24 Volts DC for motion detector and auxiliary use. This circuit can be tested / connected to on connector CN1 between 24 V and common. If an overcurrent condition occurs in this circuit, the Polymeric Positive Temperature Coefficient Device (PPTC) will heat up and gradually reduce the current flow to the point that the components fed by this circuit quit working. RT1 will feel warm to the touch.

Remove all components that can cause an overcurrent condition such as motion detectors, safety beam, autolock and anything connected to the 24 V terminals of CN1. It will usually be necessary to kill power for 30 seconds or more to allow the PPTC to cool and resume normal conduction. Faulty circuit can sometimes be identified by reintroducing components one at a time (killing power each time) until the circuit opens again.

Figure 2, Control Board Partial View_Left Side

Troubleshooting_Power Supply on C3150 Control v15.04 cont:

5. The 5 volt supply is provided by the U8 switching regulator which provides for the microprocessor, all of the LEDs and the input. This circuit can be tested at pins 1 and 4 of CN6 (Encoder) or between common of CN1 and any of the 10 inputs at CN4.

Most devices connected to the 5 volt supply draw very little current. The overall load is limited to 500ma. If this threshold is exceeded (or shorted), the regulator will shut down to protect itself and other components. Shorted encoder or autolock would be the most likely culprit. Unplug the devices, kill power for 30 seconds and retry. Bridge circuit to drive the motor. The 90 Volt AC circuit can be tested as shown below.

Figure 3, Control Board Partial View_Right Side
6. The 130 Volts DC Motor Voltage: One red wire from the 90 Volts AC transformer tap terminates at CN11 pin 5 red wire of the C3150. The other red wire is terminated at CN11 pin 10 of the C3150 and is connected to one side of Fuse F2 (3.15 amp slow blow 5×20). The other side of the fuse is connected to rectifier D21 with a retum to the other transformer red wire which terminates at CN11 pin 5 . The rectified output of D21 is filtered by capacitor C14 and provides 130 Volts filtered DC for the H Bridge circuit to drive the motor. The 90 Volt AC circuit can be tested as shown (Image 4 at right).

20. APPENDIX - A Cont:

Troubleshooting_Power Supply on C3150 Control v15.04 cont:
7. Check F2 Fuse with Red Multimeter

Lead on farside of F 2 Fuse and Black Lead on CN11 pin 5 (Image 4 at right). If voltage is present, fuse is good.

20. APPENDIX - B

MESSAGE	$\begin{aligned} & \text { DOOR } \\ & \text { TYPE } \end{aligned}$	DESCRIPTION
AC Power Failure	Both	An AC Line failure has been detected via the AUX7 input (battery backup).
Act (Aux Act)	Both	Door was actuated to open by auxiliary input.
Act (Beam)	Both	Door was actuated to open by safety beam.
Act (Com)	Both	Door was actuated to open by communications port.
Act (Cycle Test)	Both	Door was actuated to open by cycle test option.
Act (Down)	Both	Door was actuated to open by local (DOWN) button.
Act (Ext Sensor)	Both	Door was actuated to open by exterior sensor.
Act (Fire Input)	Both	Door was actuated to open by fire alarm contact input.
Act (Int Sensor)	Both	Door was actuated to open by interior sensor.
Act (Latch)	Both	Door was actuated to open by latch contact input.
"Are you sure? UP=Yes, DOWN=No"	Both	Confirmation message before certain critical tasks will be executed.
Attempting Restart	Both	Control is attempting a restart following a fatal error. Restart request was issued by remotely clearing all errors via communications port.
Autoseal	Both	Door is executing periodic Autoseal routine to insure weatherstrip seal. Autoseal runs approximately every twenty (20) seconds if Autoseal parameter is enabled, provided door is closed and idle.
Aux1 ON >60 s	Both	Warning message, Aux1 input has been on continuously for over 60 seconds.
Aux1 Test Fail	Both	Aux1 sensor reported failure when self-test was requested by control.
Aux2 ON > 60s	Both	Warning message, Aux2 input has been on continuously for over 60 seconds.
Aux2 Test Fail	Both	Aux2 sensor reported failure when self-test was requested by control.
Aux 5 ON $>60 \mathrm{~s}$	Both	Warning message, Aux5 input has been on continuously for over 60 seconds.
Aux Act On > 60s	Both	Warning message, auxiliary actuate input has been on continuously for over 60 seconds.
Braking Door	Both	Control is decelerating door to either Open Check speed (while opening) or Close Check speed (while closing).
Caution - Sensor Recycles Disabled	Both	Warning message, recycling via sensors disabled for technician measurement of reversing forces.
Check Fuse F2	Both	Informative message for possible cause of +120 V power supply failure.
Check 24V Wiring	Both	Informative message for possible cause of +24 V power supply failure.
Checking for lock...	Both	During setup, control is checking for presence of a monitored lock.
Clear Cycle Counter	Both	Diagnostic menu item, press SET to clear cycle counter. Confirmation is required. Hobbs counter is not cleared.
Clear Log	Both	Diagnostic menu item, press SET to clear data log. Confirmation is required.
Close Accelerate	Both	Door is accelerating from zero velocity to selected close speed setting.
Close Check	Both	In normal operation, door is traveling at the selected close check setting.
Close Check	Linear	In multifunction diagnostic, a linear drive door's switches show it between the close check and close cutoff positions.
Close Check Timeout	Linear	During closing, close cushion condition not encountered when expected.
Close Cushion	Both	Door is almost fully closed and is traveling at the selected close cushion setting.
Close Cutoff	Linear	In multifunction diagnostic, a linear drive door's switches show it at the close cutoff position.
Close Mon Sw Found	Belt	During first close run or close cushion in belt drive doors, a close monitor switch was located.
Close Speed	Both	Door is traveling at the selected close speed setting.
Close Speed *LIMIT*	Belt	Computed door closing speed is in excess of ANSI limit and control is slowing door.
Close Speed Timeout	Linear	During closing, close check condition not encountered when expected.

MESSAGE	$\begin{aligned} & \text { DOOR } \\ & \text { TYPE } \end{aligned}$	DESCRIPTION
Cls Check Pulse Loss	Belt	Cessation of encoder pulses unexpectedly encountered during close check portion of close cycle.
Cls Speed Pulse Loss	Belt	Cessation of encoder pulses unexpectedly encountered during close speed portion of close cycle.
Cmon	Both	During multifunction diagnostic, this is displayed if close monitor/partial open switch input contact is present.
Control is Locked!	Both	A set password is preventing an attempt was made to access diagnostics or setup mode following control reset.
Counter Cleared	Both	A Clear Counter request has been successfully processed. The user resettable cycle counter has been set to '0'.
Cycle Test Mode	Both	Displays when Cycle Test parameter has been turned on. Door will self cycle open and closed, with an approximate two (2) second pause at full close before next cycle self-initiates Used for test purposes only.
Cycles:	Both	Total opening cycles (including recycles) since cycle counter was last reset.
* Diagnostics Menu *	Both	The diagnostic menu has been successfully entered.
Data Saved	Both	Site specific parameters and/or user data have been successfully stored in control's permanent memory.
Day 1-Way, Day 1-Way Partial	Both	Door is idle and is in day 1 -way mode. Message is followed by 'Partial' if partial open mode is also enabled.
Day 2-Way, Day 2-Way Partial	Both	Door is idle and is in day 2-way mode. Message is followed by 'Partial' if partial open mode is also enabled.
Day Mode Ready	Both	Logged message only, control is idle in day mode state.
Door Mid Stroke	Linear	During multifunction diagnostic, this is displayed if no microswitches are tripped on a linear drive door type.
Door Off (User)	Both	Door has been placed in the menu (OFF) mode by user interface or remote serial command.
Door Off (Tech)	Both	Door has been placed in the menu (OFF) mode by technician (double click of SET button).
Door Position	Belt	When displayed within a data log entry, this is the position of a belt drive door (in pulses) at which the event occurred.
Door Stopped	Both	Door has been stopped by local or remote stop command and will restart automatically when stop command clears.
Drive:	Both	In multifunction diagnostic, this is followed by the motor voltage and current.
EEPROM Failure	Both	Internal failure, replace control.
Encoder:	Belt	In multifunction diagnostic, this is followed by the current door position (in pulses).
Enter Password:	Both	Control is requesting technician to enter the set password before menu may be accessed.
*** ERROR ***	Both	An error of some type has occurred.
Exiting Diagnostics	Both	Informative message when control is exiting diagnostic mode. Normal operation will resume.
Ext Sensor On > 60s	Both	Warning message, exterior sensor has been on continuously for over 60 seconds.
Ext Sensor Test Fail	Both	Exterior sensor reported failure when self-test was requested by control.
Fail Safe Lock	Both	During setup, a fail safe lock has been detected when a control query was made.
Fail Secure Lock	Both	During setup, a fail secure lock has been detected when a control query was made.
Failed to Lock	Both	The autolock has failed to successfully lock following a request to do so.
Failed To Unlock	Both	The autolock has failed to successfully unlock following a request to do so.
Fire Override	Belt	Fire contact detected with door stopped at partial open position, door moving to full open.
First Close Paused	Belt	Progress of First Close routine has been halted by some type of actuating or safety device input.

20. APPENDIX - B Cont:

Status Messsages_C3150 Control v15.04 cont:
Refer to Sheet H310.49 for message liems highlighted in yellow.

MESSAGE	$\begin{aligned} & \text { DOOR } \\ & \text { TYPE } \end{aligned}$	DESCRIPTION
First Close Run	Belt	Control is learning fully closed/home position following startup or initiation of 'Learn' cycle.
First Open Run	Belt	Control is learning fully open position during 'Learn' cycle.
Full Open	Both	Logged message only, door is at full open position.
Full Open (Latch)	Both	Logged message only, door is latched open at full open position.
Hobbs:	Both	Total opening cycles (including recycles). Not field resettable.
Hold: Aux Actuate	Both	Door is at full or partial open position and is being held open by the indicated device.
Hold: Com Channel	Both	Door is at full open position and is being held open from a remote location (communications port).
Hold: DOWN Button	Both	Door is at full or partial open position and is being held open by the indicated device.
Hold: Exterior Motion	Both	Door is at full or partial open position and is being held open by the indicated device.
Hold: Exterior Prsnc	Both	Door is at full or partial open position and is being held open by the indicated device.
Hold: Fire Input	Both	Door is at full open position and is being held open by the fire alarm contact input.
Hold: Interior Motion	Both	Door is at full or partial open position and is being held open by the indicated device.
Hold: Interior Prsnc	Both	Door is at full or partial open position and is being held open by the indicated device.
Hold: Latch	Both	Door is at full or partial open position and is being held open indefinitely by the latch condition.
Hold: Safety Beam	Both	Door is at full or partial open position and is being held open by the indicated device.
Hold: Timed Latch	Both	Door is at full or partial open position and is being held by the latch condition. Latch will Time out after P22 delay and door will automatically close.
Home Position Pending	Belt	In a belt drive system with NO close monitor switch, shows that stroke is not yet confirmed. Slow speed operation only.
Illegal Instruction	Both	An internal failure or programming error has issued an illegal instruction to the microcontroller. Consult factory.
Int Sensor On > 60s	Both	Warning message, interior sensor has been on continuously for over 60 seconds.
Int Sensor Test Fail	Both	Interior sensor reported failure when self-test was requested by control.
Latch Released	Both	The latch open condition was manually canceled.
Latch Timeout	Both	The latch open condition was automatically canceled by the Latch Timeout parameter.
Learn Cycle Complete	Belt	Learn cycle successfully completed and data stored. Control is ready for regular operation.
Learning Obst Sens	Bolt	Logged message only, control is learning maximum motor current consumed during open speed and open check portions of open cycle.
Learning Rev Peak	Both	Control is learning maximum motor current consumed during close accelerate portion of close cycle.
Learning Rev Sens	Both	Control is learning maximum motor current consumed during close speed and close check portion of close cycle.
Learning Stroke	Belt	Control is learning encoder count during 'Learn' cycle.
LKMon	Both	In multifunction diagnostic, this is displayed if the lock monitor contact is triggered.
LOCK	Bolt	In multifunction diagnostic, this is displayed if the lock is being triggered (SET button is pushed).

20. APPENDIX - B Cont:

Status Messsages_C3150 Control v15.04 cont:

MESSAGE	$\begin{aligned} & \text { DOOR } \\ & \text { TYPE } \end{aligned}$	DESCRIPTION
Log Cleared	Both	A Clear Log request has been successfully processed and the data log is purged.
Log is Empty	Both	The data log is empty and there are no items to display.
Motor Drive Failure	Both	An internal failure has occurred and the control is not supplying motor drive energy. Replace control.
Motor Failure	Both	Motor drive energy is being supplied, but the motor is not responding. Check motor and replace if necessary.
Multifunction Test	Both	Diagnostic menu item, press SET to enter Multifunction Test.
Night 1-Way,	Both	Door is idle and is in night 1-way mode. Message is followed by 'Partial' if partial open mode
Night 1-Way Partial		is also enabled.
Night 2-Way, Night 2-Way Partial	Both	Door is idle and is in night 2-way mode. Message is followed by 'Partial' if partial open mode is also enabled.
Night Mode Ready	Both	Logged message only, control is idle in night mode state.
No Cls Speed Harness	Linear	Close speed microswitch(es) missing or defective, detected and reported when door begins closing.
No Lock Detected	Both	During setup, no lock was detected when a control query was made.
No Opn Speed Harness	Linear	Open speed microswitch(es) missing or defective, detected and reported when door begins opening.
No Switches Found!	Linear	During multifunction diagnostic, this is displayed if no microswitch harness is detected on linear drive doors.
Not For Belt Drives!	Belt	Rholix block setting test cannot be executed if control is currently set for a belt drive door type.
Obst (Beam)	Both	The external safety beam has recycled the door during its closing cycle.
Obst (CAcl I)	Both	Motor current over the predetermined threshold has recycled the door during its closing acceleration
		routine.
Obst (CChk I)	Both	Motor current over the predetermined threshold while within the close check zone has recycled the door.
Obst (CChk LOP)	Both	An unexpected cessation of encoder pulses within the close check zone has recycled the door.
Obst (CSpd I)	Both	Motor current over the predetermined threshold while within the close speed zone has recycled the door.
Obst (OAcl I)	Both	Obstruction encountered during open acceleration phase, open process canceled. Operation automatically resumes.
Obst Learn Complete	Both	Control has finished learning open obstruction sensitivities for all phases of open cycle.
Obstruction Stop	Both	Obstruction encountered while opening, door temporarily halted. Operation automatically resumes at check speed.
Off	Both	In menu mode, the parameter currently displayed is disabled.
On	Both	In menu mode, the parameter currently displayed is enabled.
Open Accelerate	Both	Door is accelerating from zero velocity to selected open speed setting.
Open Accelerate + Learn	Both	Door is accelerating from zero velocity to selected open speed setting, and is also learning obstruction sensitivity.
Open Check	Both	In normal operation, door is traveling at the selected open check setting.
Open Check + Learn	Both	In normal operation, door is traveling at the selected open check setting and is also learning obstruction sensitivity.
Open Check (Partial)	Belt	In normal operation, door is traveling at the selected open check setting and is proceeding to partial open position.
Open Check	Linear	In multifunctional diagnostic, a linear drive door's switches show it between the open check and open cutoff positions.
Open Check Timeout	Linear	During opening, open cushion condition not encountered when expected.
Open Cushion	Both	Door is almost fully open and is traveling at the selected open cushion setting.
Open Cutoff	Linear	In multifunction diagnostic, a linear drive door's switches show it at the open cutoff position.
Open Resume	Both	Sidelight protection has cleared. Door has resumed normal open speed.
Open Resume (Partial)	Belt	Sidelight protection has cleared. Door has resumed normal open speed and is traveling to partial open position.

20. APPENDIX - B Cont:

Status Messsages_C3150 Control v15.04 cont:
Refer to Sheet H310.49 for message litems highlighted in yellow.

MESSAGE	$\begin{gathered} \text { DOOR } \\ \text { TYPE } \end{gathered}$	DESCRIPTION
Open Speed	Both	Door is traveling to open position at the selected open speed setting.
Open Speed + Learn	Both	Door is traveling to open position at the selected open speed setting and is also learning obstruction sensitivity.
Open Speed (Partial)	Belt	Door is traveling to partial open position at the selected open speed setting.
Open Speed Timeout	Linear	During opening, open check condition not encountered when expected.
Opn Check Pulse Loss	Belt	Cessation of encoder pulses unexpectedly encountered during open check portion of open cycle.
Opn Speed Pulse Loss	Belt	Cessation of encoder pulses unexpectedly encountered during open speed portion of open cycle.
Partial Open	Both	Logged message only, door is at partial open position.
Password Bad: Turn Door On to Restart	Both	Entered password does not match set value. Technician must cycle on/off contact before trying again.
PFC Incomplete	Both	The door was unable to reach the full closed position following a power failure.
PFO / PFC Complete	Both	The door reached the proper final position as set by the PFO/PFC parameter following a power failure.
PFO Incomplete	Both	The door was unable to reach the full open position following a power failure.
Power Fail Close	Both	An AC power failure has been detected by the battery backup and control is proceeding to fully closed position.
Power Fail Open	Both	An AC power failure has been detected by the battery backup and control is proceeding to fully open position.
Press SET to Accept	Both	Press SET to accept the value shown on the screen.
Read Counters	Both	Diagnostic menu item, press SET to read cycle and Hobbs counters.
Read Log	Both	Diagnostic menu item, press SET to read data log.
Recycl (Aux Act)	Both	Door was recycled during closing by auxiliary input.
Recycl (Beam)	Both	Door was recycled during closing by safety beam.
Recycl (Com)	Both	Door was recycled during closing by communications port.
Recycl (Down)	Both	Door was recycled during closing by local (DOWN) button.
Recycl (Ext Sensor)	Both	Door was recycled during closing by exterior sensor.
Recycl (Fire Input)	Both	Door was recycled during closing by fire alarm contact input.
Recycl (Int Sensor)	Both	Door was recycled during closing by interior sensor.
Recycl (Latch)	Both	Door was recycled during closing by latch contact input.
Replace Control	Both	A fatal error has occurred. Replace control.
Returning To Menu	Both	A diagnostic test has been exited and the control is returning to the main diagnostics menu.
Rev Learn Complete	Both	The control has finished learning close obstruction sensitivities for all phases of close cycle.
Rev Re-Learn Enabled	Both	During next closing cycle, control will attempt to re-learn site specific obstruction (motor overcurrent) settings.
S2000 Linear	Both	Selected door type is S2000 linear (Rholix drive) type.
S2003 Belt	Both	Selected door type is S2003 belt type with current operator.
S2001 Belt	Both	Selected door type is S2001 belt type with current operator.
S2003 Belt (Early)	Both	Selected door type is S2003 belt type with earlier operator. Provided for compatibility.
S2001 Belt (Early)	Both	Selected door type is S2001 belt type with earlier operator. Provided for compatibility.
Saf Beam On > 60s	Both	Warning message, safety beam sensor has been on continuously for over 60 seconds.
Saf Beam Test Fail	Both	Safety beam system reported failure when self-test was requested by control.
Select Operator:	Both	Control is requesting operator type during setup routine. Use UP or DOWN to select, then press SET.
Set Rholix Now?	Linear	Control is requestion confirmation that a Rholix block setup is to be performed. Press UP to begin or DOWN to cancel.
Setup Request	Both	A setup (initialization) request has been received.
Setup - Confirm?	Both	Control is requesting confirmation a setup is to be performed. Press UP to begin setup or DOWN to cancel.

20. APPENDIX - B Cont:

Status Messsages_C3150 Control v15.04 cont: Refer to botiom of this Chart for Message liems Highlighted in yellow.

MESSAGE	DOOR TYPE	DESCRIPTION
Show Supply Voltages	Both	Diagnostic menu item, press SET to show internal power supply voltages.
Sidelite Prot (Aux1)	Both	An Aux1 sensor input has triggered the sidelight protection mode and door has slowed to open check Speed.
Sidelite Prot (Aux2)	Both	An Aux2 sensor input has triggered the sidelight protection mode and door has slowed to open check Speed.
Starting Learn Cycle	Belt	Control is starting Learn Cycle to determine stroke and other site specific parameters.
Startup Submenu	Both	The startup submenu has been successfully entered.
Stop Command	Both	Door has been stopped by local or remote stop command and will restart automatically when stop command clears.
Stroke Confirmed	Belt	In a belt drive system with NO close monitor switch, shows that stroke is valid and normal speed operation will commence.
Stroke Out of Range	Belt	Stroke measured during 'Learn' cycle is less than 12 " (30.5 cm) or greater than 299 " (759.5 cm) .
Stroke Zeroed	Belt	A Zero Stroke request has been successfully processed. Control will automatically execute a complete Learn Cycle next time it is started.
System Boot	Both	Logged message only, occurs when control initially starts up following a power failure.
Time Delay 1	Both	Door is full open position and all open commands have ceased. Delay 1 is counting down prior to close cycle.
Time Delay 2	Both	Door is in partial open position and all open commands have ceased. Delay 2 is counting down prior to close cycle.
Total Cycles	Both	Total cycles as stored in Hobbs counter, displayed immediately after control reset or startup.
Total Stroke:	Belt	Displays measured stroke of door in both inches and centimeters.
Unlock Delay	Both	When an unmonitored lock is in use, this message displays during the unlock delay.
UP/DOWN: Find SET: Go	Both	In diagnostic menu, use UP or DOWN to find diagnostic to execute, then press SET to run it.
Version xx.xx	Both	Informational message, where xx.xx represents firmware version currently loaded into control.
$\mathrm{V} 1=$	Both	Diagnostic item, displays value of +120 V power supply.
V2=	Both	Diagnostic item, displays value of +24 V power supply.
V3=	Both	Diagnostic item, displays value of +15 V power supply.
V4=	Both	Diagnostic item, displays value of +5 V power supply.
Watchdog Timeout	Both	An internal failure or programming error has created a watchdog timerout condition. Consult factory.
Zero Stroke	Belt	Diagnostic menu item, press SET to zero stored stroke. Confirmation is required. Control will automatically execute a complete Learn Cycle next time it is started, if belt drive operator type is chosen.
+15V Supply Failure +120V Supply Failure +24V Supply Failure	Both Both Both	An Internal failure of the control's +15 V supply has occured. Replace control. The control's +120 V power supply is out of tolerance. Check appropriate fuse. The control's +24 V power supply is out of tolerance. Check external devices supplied by +24 V control output for shorts.

Message Items highlighted in yellow are considered critical events and log a history of prior events (up to 20) when they occur.
20. APPENDIX - C

Shortcuts_C3150 Control v15.04

TASK SHORTCUT	$\begin{aligned} & \text { DOOR } \\ & \text { TYPE } \end{aligned}$	PROCEDURE
1. Initiate Setup	Both	Hold SET button for at least 2 seconds following a reset or power-up.
2. Initiate Diagnostics Menu	Both	Hold UP button for at least 2 seconds following a reset or power-up or, double-click the UP button during normal operation.
3. Initiate Startup Submenu	Both	Hold DOWN button for at least 2 seconds following reset or power-up.
4. Standard Parameter Menu	Both	Turn OFF toggle input (if remote mode not enabled) or, double-click the SET button during normal operation.
5. SuperTech Parameter Menu	Both	While holding the UP button, double click the SET button during normal operation.
6. Cycle Door	Both	Press DOWN button during normal operation.
7. Begin Cycle Testing	Both	Press and hold UP button while pressing DOWN button during normal operation.
8. Show Encrypted Password	Both	Hold UP, DOWN, and SET buttons for at least 2 seconds following reset or power-up.
9. Set Rholix Block	Linear	Hold UP and DOWN buttons for at least 2 seconds following a reset or power-up (Linear Drive only).
10. Re-Learn Belt Drive	Belt	Hold UP and DOWN buttons for at least 2 seconds following a reset or power-up (Belt Drive only). Does not disturb any other parameter settings.
11. Re-Learn Reversing Sensitivities	Both	Double click the DOWN button during open check or full open portion of door cycle. Display will confirm.
12. Re-Learn Obstruction Sensitivities	Both	Double click the DOWN button while door is at rest in the closed position. Display will confirm.
13. Cancel Latch	Both	Press DOWN button when door is latched open.

20. APPENDIX-D

Harness Assemblies used on C3150 Control v15.04

SENSOR or CONTROL FEATURE	SUPPL IERVENDOR	SENSOR-HARNESS TYPE	MOUNTING LOCATION / OPERATOR	TYPE HARNESS	HARNESS LENGTH	PART NUMBER
Eagle Sensor	BEA	Motion Sensor	Header-Mounted	Flying Leads	10 ft .	E06300.0110
IXIO Sensor	BEA	Motion/Presence	Header-Mounted	PNP	5 ft .	E06300.0005
IXIO Sensor	BEA	Motion/Presence	Header-Mounted	PNP	10 ft .	E06300.0010
IONEXT/XZONE T Sensors	Optex	Motion/Presence	Header-Mounted	PNP	5 ft .	E06304.0005
IONEXT/XZONE TSensors	Optex	Motion/Presence	Header-Mounted	PNP	10 ft .	E06304.0010
OS12CTSensor	Optex	Photoelectric Beam	Jamb/Dr/Hdr. Mounted	Flying Leads	1.5 ft .	E06302.0000
Generic Sensor	Horton	Beam/AUX1/AUX2	Jamb/Dr/Hdr. Mounted	Flying Leads	10 ft .	E06302.0001
Transformer Function	Horton	Transformer Extension	Control/Transformer	PNP	5 ft .	E06305.0000
Transformer Function	Horton	Transformer Extension	Control/Transformer	PNP	1.2 ft .	E06305.0016
Motor Function	Horton	Motor Adapter-Bett Drive	Control/Motor	PNP	8 in.	E06303.0000
Motor Function	Horton	Motor Adapter-Belt Drive	Control/Motor	PNP	2 ft .	E06303.0001
Motor Function	Horton	Motor Adapter-Linear Drive	Control/Motor	PNP	1 ft .	E06319.0000
Microswitch Function - Linear	Horton	Microswitches-Linear Drive	Control/Microswitches	PNP	7 ft .	C02155.0448
Power Fail / Interconnect	Horton	E06970 PF Module to C3150	Control/Power Fail Assy	PNP	1.3 ft .	C03849.0000
Power Fail / AUX7 Function	Horton	E06970 PF Module to C3150	Control/Power Fail Assy	PNP	3 ft .	C03850.0000
AutoLock Function	Horton	AutoLock Fail-Safe/Fail-Secure	Control/AutoLock	PNP	3 ft .	C03981.0000
AutoLock Function	Horton	AutoLock Fail-Safe/Fail-Secure	Control/AutoLock	PNP	10 ft .	C03981.0001
AutoLock Function	Horton	AutoLock Fail-Safe/Fail-Secure	Control/AutoLock	PNP	7 ft .	C03981.0002
3-Position Rocker Switch	Horton	'Auto-Off-Hold' RockerSwitch	Jamb/Hdr. Mounted	Flying Leads	1 ft .	C04320.0000
3-Position Rocker Switch	Horton	'Auto-Off-Hold' RockerSwitch- Ext.	Jamb/Hdr. Mounted	Flying Leads	3.5 ft .	C04320.0005
2-Position RockerSwitch	Horton	'On-Off Rocker Switch	Jamb/Hdr. Mounted	Flying Leads	1 ft .	C05662.0000
2-Position Toggle Switch	Horton	'On-Off' Toggle Switch	Jamb/Hdr. Mounted	Flying Leads	1 ft .	C03961.0000

20. APPENDIX -E

Motor Test C3150 Control v15.04

The Motor Test is conducted to determine the resistance across the motor. A low or zero resistance will cause high current draw and damage to the control.

Place OHM meter in range to measure: 10 to 50Ω analog Rx 1 range or $\mathrm{R} 200 \Omega$ digital.
$\square \quad$ Unplug the motor and place probes in Pins 1 and 2. Read and record the resistance.

$\square \quad$ Rotate the motor slightly to advance to the next section of the commutator. (Feel for the motor brushes to make contact with the next segment on the commutator).

NOTICE: A voltage will be induced into the meter when the motor is moved. Therefore wait for the meter to stabilize before taking a reading.
$\sqcup \quad$ Continue taking readings for approximately $1 / 4$ revolution of the output pulley (Pulley is $8: 1$ ratio).

ACCEPTABLE RANGES

Shown for Each Motor Type.
NOTE:
A low reading is critical and will cause damage to the Control.

Frame Short Test

\square Place the OHM meter in the range to measure at least $20,000 \Omega$. The meter should show infinite resistance when connected.
$\square \quad$ Place meter probes in Pin 1 (BLK) and Pin 3 (GRN/YEL).

- The Meter should not move when the probes are connected.

\square Next, place the meter probes in Pin 2 (RED) and Pin 3 (GRN/YEL).
- Again, the Meter should not move when the probes are connected.

20. APPENDIX - F

Belt or Linear Drives
C07775.0000 Assembly_OPTEX OS12-CT_2 Channel Photoelectric Safety Beam with Amplifier System

Typical Bi-Part Slide Unit Elevation
Typical Single Slide Unit Elevation

Belt or Linear Drives
 Masking Parameters in SuperTech Menu

\square Explanation of Masking:

Masking refers to assigning a unique number to the various Functions depending on the Sensors chosen. The sum of these assigned numbers are recognized as unique by the processor and the control then functions based on the options chosen.
\sqcup There are 4 Masking Parameters in the SuperTech Menu and each has a Default Value assigned to it. There are a total of 10 different values depending on the Sensor and Function chosen. There are 4 different Sensor Options and 3 different Function Options to choose from. Note that there could be a separate ON/OFF Parameter for each of the 3 Functions, but the results would require changing 10 different Parameters.

Sensors	Function	Turned ON	Unique Number
Exterior Motion	Actuates	Yes / No	$1024 / 0$
Interior Motion		Yes / No	$256 / 0$
Exterior Presence	Holds Open	Yes / No	$128 / 0$
Exterior Motion		Yes / No	$64 / 0$
Interior Presence		Yes No	$32 / 0$
Interior Motion		Yes / No	$16 / 0$
Exterior Presence	Recycles	Yes / No	$8 / 0$
Exterior Motion		Yes / No	$4 / 0$
Interior Presence		Yes / No	$2 / 0$
Interior Motion		Yes / No	$1 / 0$

\sqcup Entering SuperTech Menu:

To enter the SuperTech Menu, Hold the UP button while DoubleClicking the SET button.

- The Display will read as shown. The SuperTech Menu includes the Standard Parameters as well as the SuperTech Parameters.

Masking Example:

The Masking Parameter assigns a unique number to each of the Functions listed above. The Sum of any or all of the numbers are recognized as unique by the processor.

Example:

If you added 1024 (Ext. Motion Activation) + 1 (Int. Motion Recycles), the sum would be 1025 and there is no other combination of these values that can produce 1025.

- The Processor would know the Exterior Motion Detector will Activate the door and the Interior Motion Detector will Recycle the door and only those Functions will be turned ON. Display will read:

4 Distinct Modes - Default Values:
There are 4 distinct Modes, each with default values (shown above right). Each is available in the C3150 Control and each has a parameter that can be modified using the Masking Parameters.

SENSOR
OPTIONS
Exterior Motion
Interior Motion
Exterior Presence
Interior Presence

FUNCTION
OPTIONS
Actuates
Holds Open
Recycles

Day 2-Way Mask P18: 1025

Day 2-Way Mask
 P18: 1535

20. APPENDIX-G cont:

Belt or Linear Drives
 Masking Parameters in SuperTech Menu

4 Distinct Modes - Default Values cont:

- Default P19, Day 2-Way Mask display reads:
- Default P20, Night 2-Way Mask displays reads:
- Default P21, Night 1-Way Mask displays reads:

Day 2-Way Mask
 P19: 511

Night 2-Way Mask
 P20: 0

Night 1-Way Mask

P21: 255

SENSORS	FUNCTION	Default Day 2-Way PARAMETER 18	Default Day 1-Way PARAMETER 19	Default Night 2-Way PARAMETER 20	Default Night 1-Way PARAMETER 21
Exterior Motion	Actuates	1024	0	0	
Interior Motion		256	256	0	
Exterior Presence	Holds Open	128	128	0	128
Exterior Motion		64	64	0	64
InteriorPresence		32	32	0	32
InteriorMotion		16	16	0	16
Exterior Presence	Recycles	8	8	0	8
ExteriorMotion		4	4	0	4
InteriorPresence		2	2	0	2
InteriorMotion		1	1	0	1
Mask Value		$\mathbf{1 5 3 5}$	$\mathbf{5 1 1}$	$\mathbf{0}$	$\mathbf{2 5 5}$

Changing Masking Parameter:
Suppose your customer wanted only the Exterior Motion Detector to open the door, Recycle and Hold Open the door in the 2-Way Day Mode?
Based on the Chart above for 2-Way Day Mode, add the following numbers:
$1024+64+4=1092$

- Open P18: 1535 (Default Value). Hold SET button, then press DOWN button and 1535 will begin to count down. When 1092 is reached, release SET button, double-click SET button to return to nomal operation.
- Press and Hold SET button until 'Data Saved' message appears. Exterior Motion should activate, hold open and recycle while all other functions are ignored.

Day 2-Way Mask P18: 1535

Data Saved

20. APPENDIX-H

Belt or Linear Drives
 3 Position Push Button Switch

Version 15.04
(c) Horton 2019

C3150 Control Wiring-
Partial View
\square For 'STOP', 'OPEN' and 'CLOSE' Button Inputs on a 3-Position Switch, refer to 'Step 2:

20. APPENDIX - I

Belt or Linear Drives
 WIRING DIAGRAM_C10891 / C10892 Electric Latch Assembly
 \square Positive Electric Latch for Smoke-Rated IDS Single Door Units The ProSlide ${ }^{\circledR}$ Telescoping and Standard S2003 Low-Energy Smoke Rated Automatic IDS- Isolation Door System requires the use of the C10891 / C10892 Electric Latch Assembly for positive latch.
 \square Installation Components
 The Installation of the C10891 (SO-SX-SX) or C10892 (SX-SX-SO) Slide Units requires the C10693 Electric Strike Control Board Assembly along with the C10890 Electric Strike Cable and C03981-X Lock Strike Interface Harness shown below.
 - Adjust the Parameters listed below for the Electric Latch Assembly.

Set the following Parameters for the C10891 or C10892 Electric Latch Assembly

P06 (Close Check):	+20 (Will depend on door weight)
P07 (Close Cushion):	+20 (Will depend on door weight)
P35 (Auto Seal):	ON
P41 (Lock Present):	ON (Increase Unlock Delay)
P42 (Lock Present):	ON
P43 (Lock Type- Fail Safe):	OFF
P44 (Lock has no Mon sw):	ON
P45 (Lock in day modes):	ON
P46 (Lock in 1-way Modes):	ON (If door is set for 1-way mode)

20. APPENDIX - J

Belt or Linear Drives
 Secondary Activation using AUX-3 and AUX-4

\square Using Secondary Activation
Secondary Activation provides separate 'Knowing Act' Inputs for both the Interior and Exterior Side so that these Inputs can be ignored in the (Security) 1 or 2-Way Night Mode.
Set the following Parameters as described.

- Turn Parameter 70 'AUX-3 and AUX-4 = Secondary Activation'to ON.
- Turn Parameter 59 'Stop Input N.C.' to OFF.

C8140 Touchless Switch
'Knowing Act' Activation Sensor Optional for All Slide Units

C3150 CONIROL WIRING		
WIRE	CONTROL INPU	ACTVATION
RED	CN1-1 +24V	
RED	CN1-3 COM	
GRN	CN1-3 COM	
YOL	NOTUSED	
BLU	CN4-7 -3-AUX	INIERIOR ACTIVATION
or		
BLU	CN4-8 -4-AUX	EXTERIOR ACTIVATION

- 2-Way Day Mode

Activate AUX-3: Door will OPEN and display, 'Interior Motion'.

Activate AUX-4: Door will OPEN and display, 'Exterior Motion'.

- 1-Way Day Mode

Activate AUX-3: Door will OPEN and display, 'Interior Motion'.

Activate AUX-4: Door will not OPEN and display does not change.

- 2-Way Night Mode

Activate AUX-3: Door will not OPEN and display does not change.

Activate AUX-4: Door will not OPEN and display does not change.

- 1-Way Night Mode

Activate AUX-3: Door will not OPEN and display does not change.

Activate AUX-4: Door will not OPEN and display does not change.

(Int Motion)

(Ext Motion)

(Int Motion)

Day 1-Way
0d: 0h: Om: 0s

Night 2-Way
0d: Oh: Om: 0s

Night 2-Way
Od: Oh: Om: Os

Night 1-Way
 0d: Oh: Om: 0s

Night 1-Way

0d: Oh: Om: 0s
\square Test Beam Sensor Prior to Opening
Attach monitored Beam Sensor and turn ON Parameter 63.

- Activate door and observe BEAM Yellow LED D69.
- D69 should not blink before opening but it should blink prior to closing (assuming that Parameter 69 is in the default OFF position).

SuperTech Menu Version

To enter SuperTech Menu, HOLD the UP button while double-pressing the SET button. Scroll to Parameter 69, 'Snsr test before opening' and turn it ON.

- Activate door and observe BEAM Yellow LED D69.
- LED D69 should blink before door opens and closes.

20. APPENDIX - J cont:

Belt or Linear Drives
 WIRING DIAGRAM_Secondary Activation using AUX-3 and AUX-4

\square Wiring Diagrams - Using Secondary Activation
Secondary Activation provides separate 'Knowing Act' Inputs for both the Interior and Exterior Side so that these Inputs can be ignored in the (Security) 1 or 2-Way Night Mode.
Set the following Parameters as described.
Turn Parameter 70 'AUX-3 and AUX-4 = Secondary Activation' to ON. Turn Parameter 59 'Stop Input N.C.'to OFF.
Secondary Activation 'Knowing Act' Devices are wired into AUX-3 (Interior Device) and AUX-4 (Exterior Device).

C3150 Partial Control View
Interior and Exterior 'Knowing Act' Secondary Activation Device Wiring

INTERIOR
Momentary
C1260 Push-Plate Switch

3-Positio
Rocker Switch
 WHTBLK_CNA_ 2- ANACT

C3150 Partial Control View

Illustration 2: C3150 Slide Door Control
TERMINAL BLOCK IO CONNECTIONS and LED DESCRIPTIONS

20. APPENDIX-L

Belt or Linear Drives
 C3809 Power Fail Assembly for the C3150 Control

\sqcup One-shot C3809 Power Fail Module monitors incoming AC power and automatically switches to 24 VDC when power fails.
\square While AC power fail is not occurring, the one-shot power fail module maintains battery charge and monitors battery voltage.

- LED's

Several LED's can be used to understand what the Power Fail Module is doing at anytime. Refer to Table below.

LED	CONTROL/POWER FAIL MODULE EVENT			
Color and Description	Normal Operation	AC Failure	24-Hour Test	Battery Failure
D14-YEL CPU LED	Blinking	Blinking	Blinking	Blinking
D15-GRN BATCHRRD	On	On	On	Off
D16-RED OUTPUT to DCU	Off	Blinking	Blinking	On
D18-RED AC FAIL	Off	On	Off	Off
D19-RED BAT	Off	On	On	Off
D20-RED 24 HOUR	Off	Off	On	Off

\square The Power Fail routine occurs when AC power is lost. LED's are reflected in the Table above. Upon successfully either opening or closing door (via Parameter in DCU) and in Day/Night Mode (again via another Parameter in DCU), DC power is cut to the control and the system turns back ON when AC power retums.
\sqcup The 24-Hour Test runs when the 24 hour Jumper is (re)seated, once approximately every 24 hours. This is the same exact test as a power fail routine from above, except that the system does not shut off afterwards. The purpose is to test the ability of the batteries to complete a successful door open / close cycle under their own power.
The battery failure routine is triggered when battery voltage falls below approximately 21.6 VDC (nominal is between 24 and 26VDC). Again, LEDs for this test are shown in the Table above. For Wiring Schematic, refer to Wiring Diagram 1, Sheet H310.60.

AC Power Fail / 24 Hour Test Screens

- Initial message reads:

AC Power Failure

Power Fail Close

- (Power Fail Close or Power Fail Open) during cycle.

PFO / PFC Complete

- Routine complete.
- Battery Fail event.

Hold:

Battery Failure

21. WIRING DIAGRAMS cont:

Diagram Notes

Diagram Notes / Horton Automatics Contact Information
®
Horton Automatics
World Headquarters
4242 Baldwin Boulevard
Corpus Christi, Texas 78405-3399 USA
Tel: 800.531.3111, 361.888.5591
Fax: 800.531.3108, 361.888.6510

[^0]: *Braking may override Open Check display. *Door actuated by local (Down) Button.

